

Thilawa Special Economic Zone (Zone B) Development

Environmental Monitoring Report Phase-1,2 and 3 (Operation Phase)

Myanmar Japan Thilawa Development Limited.

September 2023

CONTENTS

- 1. Executive Summary
- 2. Summary of Monitoring Activities
- 3. Monitoring Results
- 4. Environmental Monitoring Form

Appendix

- A. Water and Waste Water Monitoring Report for February, 2023
- B. Water and Waste Water Monitoring Report for April, 2023
- C. Water and Waste Water Monitoring Report for June, 2023
- D.Air Monitoring Report for June, 2023
- E. Noise and Vibration Monitoring Report for June, 2023
- F. Traffic Volume Monitoring Report for June, 2023
- G.General Waste Disposal Record (March 2023 to August 2023)
- H.Sewage Treatment Monitoring Record (March 2023 to August 2023)

1. Executive Summary

The environmental inspection and compliance monitoring program will be implemented under the direction of Ministry of Natural Resources and Environmental Conservation (MONREC) with oversight by Thilawa SEZ Management Committee.

The monitoring record from February 2023 to August 2023 according to the Environment Monitoring Plan is submitted in conformity with the provision of Chapter 10, 10.1 Table 10.1-3 and 10.2, Table 10.2-3 Content of the EIA Report of Thilawa SEZ Development Project (Zone B).

2. Summary of Monitoring Activities

 a) Progress made to date on the implementation of the EMP against the submitted implementation schedule;

We submitted EMP for TSEZ Zone B as following table.

Report No.	Description	Phase	Submission
1	Environmental Monitoring Report	Phase-1 Operation Phase	September, 2019
2	Environmental Monitoring Report	Phase-1 & 2 Operation Phase	March, 2020
3	Environmental Monitoring Report	Phase-1 & 2 Operation Phase	September, 2020
4	Environmental Monitoring Report	Phase-1 & 2 Operation Phase	March, 2021
5	Environmental Monitoring Report	Phase 1,2 & 3 Operation Phase	September, 2021
6	Environmental Monitoring Report	Phase-1,2 & 3 Operation Phase	March, 2022
7	Environmental Monitoring Report	Phase 1,2 & 3 Operation Phase	September, 2022
8	Environmental Monitoring Report	Phase-1,2 & 3 Operation Phase	March, 2023
9	Environmental Monitoring Report	Phase 1,2 & 3 Operation Phase	September, 2023

Report (No.9 is submitted this day attached with Operation Phase implementation schedule. Subsequent Operation Phase reports will be submitted on Bi-annually.

b) Difficulties encountered in implementing of the EMP and recommendations for remedying those difficulties and steps proposed to prevent or avoid similar future difficulties;

None

- c) Number and type of non-compliance with the EMP and proposed remedial measures and timelines for completion of remediation;
 - Depend on the exceeding parameters and situation
- d) Accidents or incidents relating to the occupational and community health and safety, and the environment:

Please refer to the attached Environmental Monitoring Form.

 Monitoring data on environmental parameters and conditions as committed in the EMP or otherwise required.

Please refer to the attached Environmental Monitoring Form.

3. Monitoring Result

Environmental Monitoring Plan report for operation phase implemented according to the following table, reference on Table 10.2-3, Chapter 10, EIA for Industrial Area of Zone-B.

Monitoring Plan (Operation Phase)

Category	Item	Location	Frequency	Remark
Air Quality	NO2, SO2, CO, PM23, PM 6	Representative point inside the projectures	I work each in the dry and rainy seasons	June 2023, Air Quality Monitoring Report
	92	Outflow of		B 80 80
Water Quality	Water temperature, pH. SS, DO, BOD5, COD, rolor and odor, Total Nitrogen, Total Phosphorus, Sulphide, HCN, Oil, Grease, Pormaldehyde, Phenola, Free chlorine, Zine, Chromium, Arsanic; Copper, Mercury, Cadmium, Barium, Selenium, Lead, and Nickel	retention pend to the creek (at least 3 sampling points/inixing point: discharge water, upstream water, and downstream water)	Every 2 month: Water temperature, pH, SS, DO, BODs, COD, enfor and islur, Every 6 month full parameters	February 2023, April 202. Water and Wastewater Quality Monitoring Report (Birmonthly report) June 2023 Water and Wastewater Quality Munitoring Report (Birmontally report)
Waste	Amount of Non hazardous waste- management -Amount of hazardous waste- management	Fach Tenaut	Twice/year (Submission of the environmental report by the tonants)	General waste disposal record
Scil Contamination	Status of control of solid and liquid waste which causes soil contamination	Each Tenant	Twice/year (Submission of the environmental report by the totants)	Monitoring will be started when the whole Zone B is in Operation Stage
Noise and Vibration	Noise and subration level - Traffic Count	Tenants including Project Proponent	One time each in the dry and rainy seasons	Nuise and Vibration Monstoring Report June 2023 Traffic Count Monitoring Report June 2023
Bottom Sediment	Water quality mountaring (as indicator of the pollution of the holism sediment)	Same as the water quality monitoring	-Additional analysis on the bottom sediment of creek, in case of finding continuous high concentration	Refer in Environmental Monitoring report
Hydrological Situation	Checking the function of retention pond at heavy rain	Retention Pond	When the heavy rain	6
Living and Livelihond/ Vulnerable Group/ Misdistribution of Benefit and Damage/ Childzen's Right	-The implementation status for CSR activities such as community support program	Arnund Project Site	Once/year	Rofor in Environmental Munitoring report
Risks for Infections Disease such as AIDS/HIV	Status of measure against infectious diseases	Each tonant	Twice/year (Sulmission of the environmental report by the tenams	0 0
Occupational Health and Safety	Record of soudent and infectious discases	Work site and office	Twice/year (Submission of the environmental report by the tenants)	Refer in Environmental Monitoring form
Community Health and Salety	Record of accidents and infectious diseases related to the community	Around the project site	Twice/year	Refor in Environmental Monitoring Torin

Category	Item	Location	Frequency	Remark
	The implementation status for CSR activities such as community support program	Around project site	Once/year	Refer in Environmental Monitoring form
Usage of Chemicals	Record of the type and quantity of chemicals and implementation status of control measures through self-inspection	Each tenant (that uses chemicals)	Biannually	

^{*}Remark: Each locator will report their monitoring result directly to Environmental Section, One Stop Service Center, Thilawa SEZ Management Committee.

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3 (Operation phase)

Environment Monitoring Form

Environment Monitoring Form

The latest results of the below monitoring items shall be submitted to Authorities on once at Pre-Construction Phase and on quarterly basis at Construction Phase, and on bi-annually base at Operation Phase. The items, standards to be applied, measurement points, and frequency for each monitoring parameter are established based on the EIA Report for Thilawa Special Economic Zone Development Project (Industrial Area of Zone B). Should there be any changes to the original plan, such change shall be reviewed and evaluated by environmental expert.

(1) General

- 1) Phase of the Project
 - Please mark the current phase.

Detro	Commen	barra al-		Diagram
LIE-	Cons	truct	m.	Phase

Construction Phase

Operation Phase

2) Obtainment of Environmental Permits

Name of permits	Expected issuance date	Actual issuance date	Concerned authority	Remarks (Conditions, etc.)
Approved letter for Environmental Impact Assessment (EIA) Report of Industrial Area, Thilawa Special Economic Zone (Zone-B)		29th December 2016	Thilawa SEZ Management Committee	
Notification of the comments of Ministry of Natural Resources and Environmental Conservation regarding with the Standard Change of Wastewater Quality of Industrial Zone, Internal Regulations of Thilawa SEZ Zone-A and Zone-B	5th January 2018	10 th January 2018	Thilawa SEZ Management Committee	

3) Response/Actions to Comments and Guidance from Government Authorities and the Public

Monitoring Item	Monitoring Results during Report Period	Duration of Report Period	Frequency
Number and contents of formal comments made by the public	· ·		Upon receipt of comments/
Number and contents of responses from Government agencies	The second secon		complaints

(2) Monitoring Results

1) Ambient Air Quality (June 2023)

NO2, SO2, CO, PM2.5, PM10

Location	Item	Unit	Measured Value (Mean)	Measured Value (Max)	Country's Standard*2	Target value to be applied*1	Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
	NO ₂	mg/m³	0.058	0.100	0.2 mg/m³ (1 Hour)	0.1 mg/m³ (24 Hour)	2			
	SO ₂	mg/m³	0.016	0.021	0.02 mg/m ³ (24 Hours)	0.02 mg/m ³ (24 Hours)	-		Scanner	
AQ-1 (Monastery Compound of	СО	mg/m³	0.461	0.673		10.26 mg/m³ (24 Hours)	×	One time / 6 months		Refer to air quality report
Phalan Village)	PM2.5	mg/m³	0.017	0.025	0.025 mg/m ³ (24 Hours)	0.025 mg/m³ (24 Hours)	2			
	PM10	mg/m³	0.026	0.050	0.05 mg/m ³ (24 Hours)	0.05 mg/m ³ (24 Hours)	8			

^{*1}Remarks: Referred to the tentative target value of ambient air quality (Thilawa SEZ-B EIA Report for industrial area, Table 2.4-1), Reference to the air quality monitoring report (June 2023)

*2Remark: Referred to the National Emission Quality Guideline (NEQG) 29th December 2015

Complaints from Residents

- Are there any complaints from residents regarding air quality in this monitoring period? ☐ Yes ✓ No If yes, please describe the contents of complains and its countermeasures to fill in below the table.

Contents of Complaints from Residents	Countermeasures

2) (a) Water Quality - February 2023

Measurement Point: Effluent of Wastewater (SW-2 and SW-4 are attached as reference point only and they are natural creek water which are combine all the wastewater from the Local industrial water and domestic water from existing living environment. SW-7 is the main discharging point. GW-2 is also as reference point for monitoring of existing tube well located in the Monastery Compound near Zone-B area)

- Are there any effluents to water body in this monitoring period? ☐ Yes, ✓ No

If yes, please attach "Analysis Record" and fill in the items not to comply with Refereed International Standard

Location	Item	Unit	Measur ed Value (Max)	Country's Standard'2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Temperature	°C	29	< 3 (increase)	≤ 35		Instrument Analysis Method	-
CMID	pH'5	15	9.2	6-9	6.0 - 9.0	Once	Instrument Analysis Method	
SW-2 (Reference	Suspended Solids (SS)	mg/L	26	50	Max 50	per	APHA 2540D (Dry at 103-105°C Method)	Refer to
point)	Dissolved Oxygen (DO)	mg/L	11.84	=		2	Instrument Analysis Method	water
fine sale.	BOD ₅	mg/L	5.51	50	Max 30	months	APHA 5210 B (5days BOD Test)	quality
	COD _{Cr}	mg/L	22.4	250	Max 125		APHA 5220 D (Close Reflux Colorimetric Method	report

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
SW-2 (Reference point	Total Nitrogen (T-N) Total Phosphorous (T-P) Color Odor Total Coliform* Oil and Grease Total Dissolved solids (TDS)* Iron* Mercury*	mg/L mg/L TCU TON MPN/100ml mg/L mg/L mg/L mg/L	1.5 0.09 14.37 1 92000 <3.1 1402 0.264 ≤ 0.002	2 - 400 10 - 3.5 0.01	Max. 80 Max. 2 150 Co.Pt * - Max 400 Max 10 Max 2000 Mas 3.5 Max 0.005		HACH Method 10072 (TNT Persulfate Digestion Method) APHA 4500-PE (Ascorbic Acid Method) APHA 2120C (Spectrophotometric Method) APHA 2150B (Threshold Odor Test) APHA 9221 B (Standard Total Coliform Fermentation Technique) APHA 5520 B (partition Gravimetric Method) APHA 2540C (Total Dissolved Solids Dried at 180.C) APHA 3120 B (Inductively Coupled Plasma (ICP) Method) APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	Refer to water quality report
SW-4 (Reference point)	Temperature pH Suspended Solids (SS)*3 Dissolved Oxygen (DO) BOD5 CODCr Total Nitrogen (T-N) Total Phosphorous (T-P) Color Odor Total Coliform*4 Oil and Grease Total Dissolved solids (TDS) *6*3 Iron*6 Mercury*6	mg/L mg/L mg/L mg/L mg/L mg/L TCU TON MPN/100ml mg/L mg/L mg/L mg/L	29 8.1 78 6.63 5.07 16.2 0.9 <0.05 3.69 1 54000 <3.1 3882 0.316 ≤0.002	< 3 (increase) 6-9 50 - 50 250 - 2 - 400 10 - 3.5 0.01	≤ 35 6.0 - 9.0 Max 50 - Max 30 Max 125 Max. 80 Max. 2 150 Co.Pt * Max 400 Max 10 Max 2000 Max 3.5 Max 0.005	Once per 2 months	Instrument Analysis Method Instrument Analysis Method APHA 2540D (Dry at 103-105°C Method) Instrument Analysis Method APHA 5210 B (5days BOD Test) APHA 5220 D (Close Reflux Colorimetric Method) HACH Method 10072 (TNT Persulfate Digestion Method) APHA 4500-PE (Ascorbic Acid Method) APHA 2120C (Spectrophotometric Method) APHA 2150B (Threshold Odor Test) APHA 9221 B (Standard Total Coliform Fermentation Technique) APHA 5520 B (partition Gravimetric Method) APHA 2540C (Total Dissolved Solids Dried at 180.C) APHA 3120 B (Inductively Coupled Plasma (ICP) Method) APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	Refer to water quality report

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
SW-7 (Discharge d Point)	Temperature pH Suspended Solids (SS) Dissolved Oxygen (DO) BOD5 CODCr Total Nitrogen (T-N) Total Phosphorous (T-P) Color Odor Total Coliform ⁷ Oil and Grease Total Dissolved solids (TDS) % Iron ⁶ Mercury ⁸⁶	mg/L mg/L mg/L mg/L mg/L mg/L TCU TON MPN/100ml mg/L mg/L mg/L mg/L	27 8.4 30 5.52 4.39 16.4 1.8 0.07 3.82 1 2300 <3.1 1792 1.080 ≤0.002	< 3 (increase) 6-9 50 - 50 250 - 2 - 400 10 - 3.5 0.01	≤ 35 6.0 - 9.0 Max 50 - Max 30 Max 125 Max, 80 Max, 2 150 Co.Pt * Max 400 Max 10 Max 2000 Mas 3.5 Max 0.005	Once per 2 months	Instrument Analysis Method Instrument Analysis Method APHA 2540D (Dry at 103-105°C Method) Instrument Analysis Method APHA 5210 B (5days BOD Test) APHA 5220 D (Close Reflux Colorimetric Method) HACH Method 10072 (TNT Persulfate Digestion Method) APHA 4500-PE (Ascorbic Acid Method) APHA 2120C (Spectrophotometric Method) APHA 2150B (Threshold Odor Test) APHA 9221 B (Standard Total Coliform Fermentation Technique) APHA 5520 B (partition Gravimetric Method) APHA 2540C (Total Dissolved Solids Dried at 180.C) APHA 3120 B (Inductively Coupled Plasma (ICP) Method) APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	Refer to water quality report
GW-2 (Reference point)	Temperature pH Suspended Solids (SS) Dissolved Oxygen (DO) BOD5 CODCr Total Nitrogen (T-N) Total Phosphorous (T-P) Color Odor	mg/L mg/L mg/L mg/L mg/L mg/L TCU TON	28 7.1 6 5.66 3.86 < 0.7 1.7 0.66 14.21	< 3 (increase) 6-9 50 - 50 250 - 2	≤ 35 6.0 - 9.0 Max 50 - Max 30 Max 125 Max, 80 Max, 2 150 Co.Pt*	Once per 2 months	Instrument Analysis Method Instrument Analysis Method APHA 2540D (Dry at 103-105°C Method) Instrument Analysis Method APHA 5210 B (5days BOD Test) APHA 5220 D (Close Reflux Colorimetric Method) HACH Method 10072 (TNT Persulfate Digestion Method) APHA 4500-PE (Ascorbic Acid Method) APHA 2120C (Spectrophotometric Method) APHA 2150B (Threshold Odor Test)	Refer to water quality report

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Total Coliform*4	MPN/100ml	13	400	Max 400		APHA 9221 B (Standard Total Coliform Fermentation	
	Oil and Grease	mg/L	<3.1	10	Max 10		Technique)	Refer to
GW-2 (Reference point)	Total Dissolved solids (TDS) *6	mg/L	190	3	Max 2000		APHA 5520 B (partition Gravimetric Method) APHA 2540C (Total Dissolved Solids Dried at 180.C)	quality
6	Iron*6.*8 Mercury*6	mg/L mg/L	5.62 ≤ 0.002	3.5 0.01	Mas 3.5 Max 0.005		APHA 3120 B (Inductively Coupled Plasma (ICP) Method) APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	report

^{*1}Remark: Reference to the Water and Wastewater Quality Monitoring Report (February 2023)

*4Remark: For the monitoring point of SW2 and SW-4 the result of total coliform exceeded than the target value due to three expected reasons; i) natural bacteria existed in discharged creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek and ii) wastewater from the local industrial zone outside of Thilawa SEZ and iii) delivered from surrounding area by tidal effect.

5Remark: For the monitoring points of SW-2 the result of pH exceeded might be due to wastewater discharged that may contains detergents and soap-based products from the local industrial zone outside of Thilawa SEZ.

^{*2}Remark: Referred to the National Emission Quality Guideline (NEQG) 29th December 2015

^{*3}Remark: SS and Total Dissolved Solid results exceeded in the monitoring point of SW-4 than the target value due to two expected reasons i) delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to flow back by tidal fluctuation.

^{*6} Remark: Recommendation from JICA Environmental expert (TSMC), to be more emphasized on Environmental and analyzing only.

⁷ Remark: For the monitoring point of SW-7, the results of T-Coli exceeded due to expected reason i) due to natural bacteria existed in all area of Zone B because there are various kinds of vegetation and creature such as birds, and small animals in and along the retention pond. Total coliforms do not affect human health directly, self-monitoring was carried out to identify health impact by coliform bacteria. As for the result of E-Coli SW-7 was 2. It is considered that there is no significant impact to human health.

^{*8} Remark: For the monitoring point of GW-2, the results of Iron exceeded due to the influence of natural origin (iron can reach out from soil by run-off).

2) (a) Water Quality - April 2023

Measurement Point: Effluent of Wastewater (SW-2 and SW-4 are attached as reference point only and they are natural creek water which are combine all the wastewater from the Local industrial water and domestic water from existing living environment. SW-7 is the main discharging point. GW-2 is also as reference point for monitoring of existing tube well located in the Monastery Compound near Zone-B area)

- Are there any effluents to water body in this monitoring period? Yes, V No If yes, please attach "Analysis Record" and fill in the items not to comply with Refereed International Standard

Location	Item	Unit	Measure d Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
SW-2 (Reference point)	Temperature pH Suspended Solids (SS) Dissolved Oxygen (DO) BOD5 CODCr Total Nitrogen (T-N) Total Phosphorous (T-P) Color Odor Total Coliform*4 Oil and Grease Total Dissolved solids (TDS) *6.*3 Iron*6 Mercury*6	mg/L mg/L mg/L mg/L mg/L mg/L TCU TON MPN/100 ml mg/L mg/L mg/L mg/L	30 7.6 50 5.76 10.55 31 1.2 <0.05 17.44 17000 <3.1 8162 0.062 ≤ 0.002	< 3 (increase) 6-9 50 - 50 250 - 2 - 400 10 - 3,5 0.01	≤ 35 6.0 - 9.0 Max 50 - Max 30 Max 125 Max. 80 Max. 2 150 Co.Pt* - Max 400 Max 10 Max 2000 Max 3.5 Max 0.005	Once per 2 months	Instrument Analysis Method Instrument Analysis Method APHA 2540D (Dry at 103-105°C Method) Instrument Analysis Method APHA 5210 B (5days BOD Test) APHA 5220 D (Close Reflux Colorimetric Method) HACH Method 10072 (TNT Persulfate Digestion Method) APHA 4500-PE (Ascorbic Acid Method) APHA 2120C (Spectrophotometric Method) APHA 2150B (Threshold Odor Test) APHA 9221 B (Standard Total Coliform Fermentation Technique) APHA 5520 B (partition Gravimetric Method) APHA 2540C (Total Dissolved Solids Dried at 180.C) APHA 3120 B (Inductively Coupled Plasma (ICP) Method) APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	Refer to water quality report
SW-4 (Reference point)	Temperature pH	°C	33 8.8	< 3 (increase) 6-9	≤35 6.0 - 9.0	Once per	Instrument Analysis Method Instrument Analysis Method	ANA DEVEL

Location	Item	Unit	Measure d Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard
	Suspended Solids (SS)	mg/L	46	50	Max 50	2	APHA 2540D (Dry at 103-105°C Method)	-
	Dissolved Oxygen (DO)	mg/L	12.13	-	-	months	Instrument Analysis Method	Refer to
	BOD5	mg/L	13.92	50	Max 30		APHA 5210 B (5days BOD Test)	water
SW-4	CODCr	mg/L	39,9	250	Max 125		APHA 5220 D (Close Reflux Colorimetric Method)	quality
(Reference	Total Nitrogen (T-N)	mg/L	1.6		Max. 80		HACH Method 10072 (TNT Persulfate Digestion Method)	report
point)	Total Phosphorous (T-P)	mg/L	< 0.05	2	Max. 2		APHA 4500-PE (Ascorbic Acid Method) APHA 2120C (Spectrophotometric Method)	18
	Color	TCU	10.98	15	150 Co.Pt *		APHA 2150B (Threshold Odor Test)	
	Odor	TON	2 4600				APHA 9221 B (Standard Total Coliform Fermentation	
	Total Coliform*4	MPN/100	100000	400	Max 400		Technique)	
	Oil and Grease	ml	<3.1	10	Max 10		APHA 5520 B (partition Gravimetric Method)	
	Total Dissolved solids	mg/L	6284	9.0	Max 2000		APHA 2540C (Total Dissolved Solids Dried at 180.C)	
	(TDS) %*3	mg/L					The formation of the second se	
	Iron*6	ma/T	0.070	3.5	Mas 3.5		APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
	Mercury'6	mg/L mg/	≤ 0.002	0.01	Max 0,005		APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
	Temperature	°C	30	< 3 (increase)	≤ 35		Instrument Analysis Method	
	pH	-	8.1	6-9	6.0 - 9.0		Instrument Analysis Method	
SW-7	Suspended Solids (SS)	mg/L	52	50	Max 50		APHA 2540D (Dry at 103-105°C Method)	
(Discharge	Dissolved Oxygen (DO)	mg/L	7.19				Instrument Analysis Method	
d Point)	BOD5	mg/L	10.59	50	Max 30		APHA 5210 B (5days BOD Test)	
	CODCr	mg/L	26.1	250	Max 125	Once	APHA 5220 D (Close Reflux Colorimetric Method)	
	Total Nitrogen (T-N)	mg/L	0.4		Max. 80	per	HACH Method 10072 (TNT Persulfate Digestion Method)	Refer to
	Total Phosphorous (T-P)	mg/L	< 0.05	2	Max. 2	2	APHA 4500-PE (Ascorbic Acid Method)	water
	Color	TCU	7.21	- -	150 Co.Pt *	months	APHA 2120C (Spectrophotometric Method)	quality
	Odor	TON	1	-			APHA 2150B (Threshold Odor Test)	report
	Total Coliform*4	MPN/100	400	400	Max 400		APHA 9221 B (Standard Total Coliform Fermentation	
		mI		10	Max 10		Technique)	
	Oil and Grease	mg/L	<3.1	1 ± 5	Max 2000		APHA 5520 B (partition Gravimetric Method)	NA AWA OF
	Total Dissolved solids	mg/L	9874				APHA 2540C (Total Dissolved Solids Dried at 180.C)	MIJT

Location	Item	Unit	Measure d Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
SW-7 (Discharge d Point)	(TDS) *6.*5 Iron*6 Mercury*6	mg/L mg/	0.072 ≤ 0.002	3.5 0.01	Mas 3.5 Max 0.005		APHA 3120 B (Inductively Coupled Plasma (ICP) Method) APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	Refer to water quality report
GW-2 (reference point)	Temperature pH Suspended Solids (SS) Dissolved Oxygen (DO) BOD5 COD _{Cr} Total Nitrogen (T-N) Total Phosphorous (T-P) Color Odor Total Coliform ⁷⁷ Oil and Grease Total Dissolved solids (TDS) ⁵⁶	mg/L mg/L mg/L mg/L mg/L mg/L TCU TON MPN/100 ml mg/L mg/L mg/L	27 6.5 4 7.20 3.56 <0.7 0.7 0.54 27.06 1 2700 <3.1 182	< 3 (increase) 6-9 50 - 50 250 - 2 - 400 10 -	≤35 6.0 - 9.0 Max 50 Max 30 Max 125 Max. 80 Max. 2 150 Co.Pt * Max 400 Max 10 Max 2000	Once per 2 months	Instrument Analysis Method Instrument Analysis Method APHA 2540D (Dry at 103-105°C Method) Instrument Analysis Method APHA 5210 B (5days BOD Test) APHA 5220 D (Close Reflux Colorimetric Method) HACH Method 10072 (TNT Persulfate Digestion Method) APHA 4500-PE (Ascorbic Acid Method) APHA 2120C (Spectrophotometric Method) APHA 2150B (Threshold Odor Test) APHA 9221 B (Standard Total Coliform Fermentation Technique) APHA 5520 B (partition Gravimetric Method) APHA 2540C (Total Dissolved Solids Dried at 180.C)	Refer to water quality report
	Iron*6 Mercury*6	mg/L mg/	0.108 ≤ 0.002	3.5 0.01	Mas 3.5 Max 0.005		APHA 3120 B (Inductively Coupled Plasma (ICP) Method) APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	

^{*1}Remark: Reference to the Water and Wastewater Quality Monitoring Report (April 2023)

^{*2}Remark: Referred to the National Emission Quality Guideline (NEQG) 29th December 2015

^{*3}Remark: Total Dissolved Solids results exceeded in the monitoring point of SW-2 and SW-4 than the target value due to expected reasons i) delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to backflow by tidal fluctuation.

^{*4}Remark: For the monitoring point of SW2, SW4 the result of total coliform exceeded than the target value due to expected reasons i) natural bacteria existed in discharge

creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek, ii) wastewater from the local industrial zone outside of Thilawa SEZ, and iii) delivered from surrounding area by tidal effect.

- *5 Remark: For the monitoring point of SW-7, the result of SS and TDS exceeded than the target value due to the surface water run-off from bare land in Zone B.
- 6 Remark: Recommendation from JICA Environmental expert (TSMC), to be more emphasized on Environmental and analyzing only.
- 7 Remark: For the monitoring point at GW-2, the results of T-Coli exceeded than target value it may be possible due to the poor maintenance of well which can increase the risk of bacteria and other harmful organisms. However, the result of E. Coli of (GW-2) was under the reference value. Therefore, although the target value of total coliform exceeded at monitoring point of (GW-2), it is considered that there is no significant impact on human health.

2) (b) Water Quality - June 2023

<u>Measurement Point:</u> Effluent of Wastewater (SW-2 and SW-4 are attached as reference point only and they are natural creek water which are combine all the wastewater from the Local industrial water and domestic water from existing living environment. SW-7 is the main discharging point. GW-2 is also as reference point for monitoring of existing tube well located in the Monastery Compound near Zone-B area)

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Temperature	°C	26	< 3 (increase)	≤ 35		Instrument Analysis Method	
	pH	¥	7.4	6-9	6~9		Instrument Analysis Method	
SW-2	Suspended Solids (SS) ⁴³	mg/L	90	50	Max 50		APHA 2540 D Method	
(Reference	Dissolved Oxygen (DO)	mg/L	3.88	4			Instrument Analysis Method	
point)	BOD (5)	mg/L	3.86	50	Max 30		APHA 5210 B Method	Refer to water
	COD (Cr)	mg/L	24.3	250	Max 125	Once per	APHA 5220D Method	quality report
	Total Coliform ⁴	MPN/100 ml	>160000	400	Max 400	6 months	APHA 9221B Method	
	Total Nitrogen (T-N)	mg/L	14.7	-	Max 80		HACH Method 10072 Method	
	Total Phosphorous (T-P)	mg/L	0.65	2	Max 2		APHA 4500-P E Method	SUN AWADING
	Color	TCU	24.17	978	Max 150		APHA 2120C Method	Sine man

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Odor	TON	1				APHA 2150 B Method	
	Oil and Grease	mg/L	<3.1	10	Max 10		APHA 5520B Method	
	Mercury	mg/L	≤ 0.002	0.01	Max 0.005		APHA 3120 B Method	
	Zinc	mg/L	≤ 0.002	2	Max 2		APHA 3120 B Method	
	Arsenic	mg/L	≤ 0.010	0.1	Max 0.1		APEIA 3120 B Method	
	Chromium	mg/L	≤ 0.002	0.5	Max 0.5		APHA 3120 B Method	Refer to water
	Cadmium	mg/L	≤ 0.002	0.1	Max 0.03		APHA 3120 B Method	quality report
	Selenium	mg/L	≤ 0.010	0.1	Max 0.02		APHA 3120 B Method	Alessand Assistant
SW-2	Lead	mg/L	≤ 0.002	0.1	Max 0.1		APHA 3120 B Method	
Reference	Copper	mg/L	≤ 0.002	0.5	Max 0.5		APHA 3120 B Method	
point)	Barium	mg/L	≤ 0.002	100	Max 1		APHA 3120 B Method	
	Nickel	mg/L	≤ 0.002	0.5	Max 0.2		APHA 3120 B Method	
	Cyanide	mg/L	< 0.002	0.1	Max 0.1		HACH 8027 Method	
	Total Cyanide	mg/L	0.003	1	Max I		APHA 4500-CN-C Method	
	Free Chlorine	mg/L	< 0.1		Max 1		(인) 보이면 하게 하는 사람들은 모든 사람들은 다른 사람들이 되었다.	
	Sulphide (S ₂ -)	mg/L	0.371	1	Max 1		APHA 4500-CL G Method	
	Formaldehyde	mg/L	0.213		Max 1		HACH 8131 Method	
	Phenols	mg/L	0.002	0.5	Max 0.5		HACH 8110 Method	
	Iron*5	mg/L	8.346	3.5	Max 3.5		USEPA Method 420.1	
	Total Dissolved Solids	mg/L	224	1.40000	Max 2000		APHA 3120 B Method	
	Total Residual Chlorine	mg/L	< 0.1	0.2	Max 0.2		APHA 2540 C Method	
	Chromium (Hexavalent)	mg/L	< 0.05	0.1	Max 0.1		APHA 4500-CL G Method	
	Ammonia*º	mg/L	14	10	Max 10		ISO 11083:1994 Method HACH Method 10205 Method	
	Fluoride	mg/L	0.187	20	Max 20		APHA 4110 B Method	
	Silver	mg/L	≤ 0.002	0.5	Max 0.5		APHA 3120 B Method	
	Temperature	°C	27	< 3 (increase)	≤ 35		Instrument Analysis Method	
	pH		7	6-9	6~9		Instrument Analysis Method	
	Suspended Solids (SS)*3	mg/L	502	50	Max 50		APHA 2540 D Method	
	Dissolved Oxygen (DO)	mg/L	6.02	550	CANADA SANCE		Instrument Analysis Method	
W-4	BOD (5)	mg/L	4.44	50	Max 30	Once per	APHA 5210 B Method	Refer to water
Reference	COD (Cr)	mg/L	5.0	250	Max 125	6 months	APHA 5220D Method	quality report
oint)	Total Coliform*4	MPN/100	>160000	400	Max 400		APHA 9221B Method	STAN AW
	Total Nitragan (T.N)	ml m./T	1.6		M 90			1/3
	Total Nitrogen (T-N)	mg/L	1.6	-	Max 80		HACH Method 10072 Method	A MIJ

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Total Phosphorous (T-P)	mg/L	0.72	2	Max 2		APHA 4500-P E Method	
SW-4 (Reference point)	Color Odor Oil and Grease Mercury Zinc Arsenic Chromium Cadmium Selenium Lead Copper Barium Nickel Cyanide Total Cyanide Free Chlorine Sulphide (S2 -) Formaldehyde Phenols Iron*5 Total Dissolved Solids Total Residual Chlorine Chromium (Hexavalent) Ammonia Fluoride Silver	TCU TON mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	3.58 1 < 3.1 ≤ 0.002 0.026 ≤ 0.010 ≤ 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.003 < 0.004 < 0.1 0.333 0.178 < 0.002 22.626 266 < 0.1 < 0.05 0.71 0.301 ≤ 0.002	10 0.01 2 0.1 0.5 0.1 0.1 0.5 0.5 0.1 1 1 0.5 3.5 0.2 0.1 10 20 0.5	Max 150 Max 0.005 Max 0.1 Max 0.5 Max 0.03 Max 0.02 Max 0.1 Max 0.5 Max 0.1 Max 0.5 Max 1 Max 0.1 Max 1 Max 0.5 Max 0.5 Max 0.5 Max 0.5 Max 0.1 Max 10 Max 20 Max 0.5		APHA 2120C Method APHA 2150 B Method APHA 3120 B Method APHA 4500-CN-C Method APHA 4500-CL G Method HACH 8131 Method HACH 8110 Method USEPA Method 420.1 APHA 3120 B Method APHA 2540 C Method APHA 4500-CL G Method ISO 11083:1994 Method APHA 4500-CL G Method ISO 11083:1994 Method APHA 4110 B Method APHA 4110 B Method APHA 4110 B Method APHA 3120 B Method	Refer to water quality report
SW-7 (Discharge d point)	Temperature pH Suspended Solids (SS) Dissolved Oxygen (DO) BOD (5) COD (Cr)	mg/L mg/L mg/L mg/L mg/L	27 7.5 32 4.86 7.55 15	< 3 (increase) 6-9 50 - 50 250	≤ 35 6~9 Max 50 - Max 30 Max 125	Once per 6 months	Instrument Analysis Method Instrument Analysis Method APHA 2540 D Method Instrument Analysis Method APHA 5210 B Method APHA 5220D Method	Refer to water

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Total Coliform®	MPN/100 ml	> 160000	400	Max 400		APHA 9221B Method	
	Total Nitrogen (T-N)	mg/L	0.6	3	Max 80		HACH Method 10072 Method	
	Total Phosphorous (T-P)	mg/L	0.09	2	Max 2		APHA 4500-P E Method	
answaren	Color	TCU	8.95		Max 150		APHA 2120C Method	
SW-7	Odor	TON	1	27	***************************************		APHA 2150 B Method	
Discharge	Oil and Grease	mg/L	< 3.1	10	Max 10		APHA 5520B Method	
d point)	Mercury	mg/L	≤ 0.002	0.01	Max 0.005		APHA 3120 B Method	
	Zine	mg/L	0.11	2	Max 2		APHA 3120 B Method	Refer to water
	Arsenic	mg/L	≤ 0.010	0.1	Max 0.1		APHA 3120 B Method	quality report
	Chromium	mg/L	≤ 0.002	0.5	Max 0.5		APHA 3120 B Method	(Marines-14-15-14-15-15)
	Cadmium	mg/L	≤ 0.002	0.1	Max 0.03		APHA 3120 B Method	
	Selenium	mg/L	≤ 0.010	0.1	Max 0.02		APHA 3120 B Method	
	Lead	mg/L	≤ 0.002	0.1	Max 0.1		APHA 3120 B Method	
	Copper	mg/L	≤ 0.002	0.5	Max 0.5		APHA 3120 B Method	
	Barium	mg/L	≤ 0.002		Max 1		APHA 3120 B Method	
	Nickel	mg/L	≤ 0.002	0.5	Max 0.2		APHA 3120 B Method	
	Cyanide	mg/L	< 0.002	0.1	Max 0.1		HACH 8027 Method	
	Total Cyanide	mg/L	0.003	1	Max 1		APHA 4500-CN-C Method	
	Free Chlorine	mg/L	< 0.1		Max 1		APHA 4500-CL G Method	
	Sulphide (S ₂ -)	mg/L	0.080	1	Max 1		HACH 8131 Method	
	Formaldehyde	mg/L	0.041	121	Max 1		HACH 8110 Method	
	Phenols	mg/L	< 0.002	0.5	Max 0.5		USEPA Method 420.1	
	Iron	mg/L	1.882	3.5	Max 3.5		APHA 3120 B Method	
	Total Dissolved Solids	mg/L	90	-	Max 2000		APHA 2540 C Method	
	Total Residual Chlorine	mg/L	< 0.1	0.2	Max 0.2		APHA 4500-CL G Method	
	Chromium (Hexavalent)	mg/L	< 0.05	0.1	Max 0.1		ISO 11083:1994 Method	
	Ammonia	mg/L	0.15	10	Max 10		HACH Method 10205 Method	
	Fluoride	mg/L	0.131	20	Max 20		APHA 4110 B Method	
	Silver	mg/L	≤ 0.002	0.5	Max 0.5		APHA 3120 B Method	
GW-2	Temperature	"C	28	< 3 (increase)	≤ 35	Once per	Instrument Analysis Method	Refer to water
(Reference	pH		6.4	6-9	6~9	6 months	Instrument Analysis Method	quality report
point)	Suspended Solids (SS)	mg/L	14	50	Max 50	o monus	APHA 2540 D Method	S DET

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Dissolved Oxygen (DO)	mg/L	6.63	-	3		Instrument Analysis Method	
	BOD (5)	mg/L	7.88	50	Max 30		APHA 5210 B Method	
	COD (Cr)	mg/L	20	250	Max 125		APHA 5220D Method	
	Total Coliform ⁷	MPN/100 ml	1600	400	Max 400		APHA 9221B Method	
	Total Nitrogen (T-N)	mg/L	< 0.5	(4)	Max 80		HACH Method 10072 Method	
	Total Phosphorous (T-P)	mg/L	0.60	2	Max 2		APHA 4500-P E Method	
	Color	TCU	14.55		Max 150		APHA 2120C Method	
	Odor	TON	1	**			APHA 2150 B Method	
	Oil and Grease	mg/L	< 3.1	10	Max 10		APHA 5520B Method	
	Mercury	mg/L	≤ 0.002	0.01	Max 0.005		APHA 3120 B Method	Refer to water
	Zinc	mg/L	≤ 0.002	2	Max 2		APHA 3120 B Method	quality report
	Arsenic	mg/L	≤ 0.010	0.1	Max 0.1		APHA 3120 B Method	
	Chromium	mg/L	≤ 0.002	0.5	Max 0.5		APHA 3120 B Method	
	Cadmium	mg/L	≤ ().002	0.1	Max 0.03		APHA 3120 B Method	
GW-2	Selenium	mg/L	≤ 0.010	0.1	Max 0.02		APHA 3120 B Method	
(Reference	Lead	mg/L	≤ 0.002	0.1	Max 0.1		APHA 3120 B Method	
point)	Copper	mg/L	≤ 0.002	0.5	Max 0.5		APHA 3120 B Method	
politi	Barium	mg/L	≤ 0.002	-	Max 1		APHA 3120 B Method	
	Nickel	mg/L	≤ 0.002	0.5	Max 0.2		APHA 3120 B Method	
	Cyanide	mg/L	< 0.002	0.1	Max 0.1		HACH 8027 Method	
	Total Cyanide	mg/L	< 0.002	1	Max 1		APHA 4500-CN-C Method	
	Free Chlorine	mg/L	< 0.01		Max 1		APHA 4500-CL G Method	
	Sulphide (S ₂ -)	mg/L	0.029	1	Max 1		HACH 8131 Method	
	Formaldehyde	mg/L	0.004		Max 1		HACH 8110 Method	
	Phenols	mg/L	0.007	0.5	Max 0.5		USEPA Method 420.1	
	Iron*6	mg/L	6.714	3.5	Max 3.5		APHA 3120 B Method	
	Total Dissolved Solids	mg/L	178		Max 2000		APHA 2540 C Method	
	Total Residual Chlorine	mg/L	< 0.1	0.2	Max 0.2		APHA 4500-CL G Method	
	Chromium (Hexavalent)	mg/L	< 0.05	0.1	Max 0.1		ISO 11083:1994 Method	ANN AWA DE
	Ammonia	mg/L	0.02	10	Max 10		HACH Method 10205 Method	3
	Fluoride	mg/L	0.514	20	Max 20		APHA 4110 B Method	MIJTD
	Silver	mg/L	≤ 0.002	0.5	Max 0.5		APHA 3120 B Method	1 3 ID

- *1Remark: Reference to the Water and Wastewater Quality Monitoring Report (June 2023)
- *2Remark: Referred to the National Emission Quality Guideline (NEOG) 29th December 2015
- *3Remark: SS result exceeded in the monitoring point of SW-2, SW-4 than the target value due to expected reasons i) delivered from upstream area such as natural origin and wastewater from local industrial zone which is located outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to backflow by tidal fluctuation along Shwe Pyauk creek.
- *4Remark: For the monitoring point of SW2, SW4 the result of total coliform exceeded than the target value due to expected reasons i) the existing of various kinds of vegetation and animals, especially the excrement of the creature and death of freshwater fishes in and along the discharged creek, ii) wastewater from the local industrial zone outside of Thilawa SEZ, and iii) delivered from surrounding area by tidal effect.
- 5Remark: For the monitoring point of SW-2 and SW-4, the result of iron exceeded due to expected reason i) maybe due to the influence of natural origin (iron can reach out from the soil by runoff). Surroundings of the Thilawa SEZ especially small hilly areas are mainly composed of iron rich soil (lateritic soil), and it can be transported to the low land area by run off.
- 6 Remark: The result of Iron at the monitoring point of reference tube well (GW-2) exceeded the target value. Comparison with previous monitoring results of reference tube well (GW-2), the iron concentration results ranged from 3.076 mg/1 (August, 2019) - 8.310 mg/1 (October, 2021) and most of the iron concentration measured results (from April, 2019 to June, 2022) exceeded the target value except the iron concentration result of August, 2019 and April, 2022. Therefore, the possible reasons may due to the influence of natural origin (iron can reach out from soil by run-off). In Yangon, soil is naturally rich in iron.
- 7 Remark: For the monitoring point of GW-2, the results of Total Coliform exceeded due to the poor maintenance of well which can increase the risk of bacteria and other harmful organisms. However, the result of E. Coli of (GW-2) was under the reference value. Therefore, although the target value of total coliform exceeded at monitoring point of (GW-2), it is considered that there is no significant impact on human health.
- 18 Remark: For the monitoring point of SW-7, the results of Total Coliform exceeded due to the expected reason i) natural bacteria existed in all area of Zone B because the existing of various kinds of vegetation and animals, especially the excrement of the creature and death of freshwater fishes in and along the retention pond. Total coliforms do not affect human health directly, self-monitoring was carried out to identify health impact by coliform bacteria. As for the result of E-Coli SW-7 was 17. It is considered that there is no significant impact to human health.

¹⁹ Remark: For the monitoring point of SW-2, the results of Ammonia exceeded due to the expected reason i) due to the discharged wastewater from the local industrial zone, nitrogenous waste from animals and runoff from agricultural land.

3) Soil Contamination (only operation phase)

Situations environmental report from tenants

 Are there any serious issues regarding soil contamination in 	this monitoring period? Yes, V No	
If yes please describe the contents of complains and its countern	neasures to fill in below the table.	
Contents of Issues on Soil Contamination	Countermeasures	

Contents of Issues on Soil Contamination Countermeasures

Remark: Soil contamination survey will be done after the whole Zone-B is operation stage.

4) Noise Level (June 2023)

Location	Item	Unit	Measured Value (Mean)	Measured Value (Max)	Country's Standard	Target value to be applied*	Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
Residential Area	Leq (day)	dB(A)	56	63	Refer to NEQG Article 1,3	60	Refer the section 2.4 in EIA main report	One time / 3 months		
NV-2	Leq (evening)	dB(A)	-	-		55				
(5 June 2023)	Leq(night)	dB(A)		-		50				
Along the road	Leq (day)	dB(A)	62	63		75				
NV-1) 6 June 2023)	Leq(night)	dB(A)	0.50	-		70				

^{*}Remarks: Referred to the tentative target value of ambient air quality (EIA Report for industrial area, Table 2.4-8), Reference to the noise and vibration monitoring report (June 2023)

Remark: Due to has Curfew and we could monitor only day time only.

Complaints from Residents

- Are there any complaints from residents regarding noise in this monitoring period?

Yes, Vo

Yes, No

No

Contents of Complaints from Residents	Countermeasures					

5) Solid Waste

Measurement Point: Storage for Sludge* (Operation Phase)

Are there any wastes if sludge in this monitoring period?

and the same	-
· AVOS	No
VIES,	3.30

If yes, please report the amount of sludge and fill in the results of solid waste management activities.

Item	Date	Generated from	Unit	Value	Disposed to
General Waste with Green Waste	14 March 2023	Landscaping and Plantation	Kg	2800	Waste disposing to Than Lynn Development Committee Yangon Division
General Waste with Green Waste	25 April 2023	Landscaping and Plantation	Kg	2850	Waste disposing to Than Lynn Development Committee Yangon Division
General Waste with Green Waste	30 May 2023	Landscaping and Plantation	Kg	2900	Waste disposing to Than Lynn Development Committee, Yangon Division
General Waste with Green Waste	19 June 2023	Landscaping and Plantation	Kg	2950	Waste disposing to Than Lynn Development Committee Yangon Division
General Waste with Green Waste	31 August 2023	Landscaping and Plantation	Kg	2750	Waste disposing to Than Lynn Development Committee Yangon Division
	Total		Kg	14250	
Sludge	7 March 2023	Sewage Treatment Plant	Kg	5380	Golden DOWA Eco-System Myanmar Co., Ltd
Sludge	20 March 2023	Sewage Treatment Plant	Kg	.6000	Golden DOWA Eco-System Myanmar Co., Ltd
Sludge	20 April 2023	Sewage Treatment Plant	Kg	5820	Golden DOWA Eco-System Myanmar Co., Ltd
Sludge	16 May 2023	Sewage Treatment Plant	Kg	5980	Golden DOWA Eco-System Myanmar Co., Ltd
Sludge	5 July 2023	Sewage Treatment Plant	Kg	6920	Golden DOWA Eco-System Myanmar Co., Ltd
Sludge	18 August 2023	Sewage Treatment Plant	Kg	6900	Golden DOWA Eco- System Myanmar Co., Ltd Golden DOWA Eco- System Myanmar Co., Ltd
	Total		Kg	37000	3/12

Remarks: Waste amount is not only in TSEZ-B but also combine with TSEZ-A General Waste, Generate wastes are dried waste and weight value are estimated base on type of Trash collector car. Green Waste (Grass cutting waste) are used in Bio-fertilizer.

Note: Zone-B wastewater treated at Sewage Treatment of TSEZ-A. Above data are sludge generated from Sewage treatment plant of TSEZ-A.

6) (a) Ground Subsidence Hydrology (GPS Location 16.67 N, 96.29E)

Duration	Water Cons	umption	Ground Level		N
(Month)	Quantity	Unit	Quantity	Unit	Note
13 March -2023			+6,303	m	There is no tube well water consumption and Ground level monitor once per month

6) (b) Ground Subsidence Hydrology (GPS Location 16.67 N, 96.29E)

Duration	Water Consumption		Ground	Level	NT-1-
(Month)	Quantity	Unit	Quantity	Unit	Note
21 April -2023			+6.303	m	There is no tube well water consumption and Ground level monitor once per month

6) (c) Ground Subsidence Hydrology (GPS Location 16.67 N, 96.29E)

Duntion	Water Consumption		Ground Level			
Duration (Month)	Quantity	Unit	Quantit	Unit	Note	
12 May -2023			+6.303	m	There is no tube well water consumption and Ground level monitor once per month	

6) (d) Ground Subsidence Hydrology (GPS Location 16.67 N, 96.29E)

Duration	Water Cons	umption	Ground Level		N. t.
(Month)	Quantity	Unit	Quantity	Unit	Note
21 June -2023			+6.301	m	There is no tube well water consumption and Ground level monitor once per month

6) (e) Ground Subsidence Hydrology (GPS Location 16.67 N, 96.29E)

Duration	Water Cons	sumption	Ground	Level	NI-1-
(Month)	Quantity	Unit	Quantity	Unit	Note

			+6.299	m	There is no tube well water consumption and Ground level monitor once per month
(f) Ground Sul	osidence Hydro	logy (GPS Lo	cation 16.67	7 N, 96.29	DE)
Duration Water Consumption Ground Level					
(Month)	Quantity	Unit	Quantity Unit		Note
25 August -2023			+6.299	m	There is no tube well water consumption and Ground level monitor once per month
- Are there at	s from Resident ny complaints fr se describe the o	om residents	regarding	offensive	odor in this monitoring period? Yes, No
If yes, pleas	ny complaints fr	om residents contents of co	mplains an	offensive ad its cou	odor in this monitoring period? No No Countermeasures Countermeasures
If yes, please	ny complaints from the complaints from Complaints fr	om residents contents of co om Residen	omplains an	offensive ad its cou	ntermeasures to fill in below the table.
Contents of Situations env	ny complaints from the com	om residents contents of co om Residen ort from tena	ts nts ffensive ode	or in this	ntermeasures to fill in below the table.

- 8) Infectious disease, Working Environment, Accident Information from contractor (construction phase) or tenants (operation phase)
- Are there any incidents regarding infectious disease, Working Environment, Accident in this monitoring period? ☐ Yes, ✓No If yes, please describe the contents of complains and its countermeasures to fill in below the table.

Contents of Incidents	Countermeasures
no accident and incident during monitoring period.	

Note: If emergency incidents are occurred, the information shall be reported to the relevant organizations and authorities immediately.

- Resettlement Works for Project Affected Persons (PAPs) and Common Assets Information from TSMC
 - Please describe the progress and remarkable issues (if any) to fill in below the table.

Re	esentment Works	Progress in Narrative	Remarkable Issues	
	Land Acquisition and Relocation	There is no case during March 2023 to August 2023.		
Projected Affected Persons	Income Restoration Program	1) Supporting rice and cooking oil to PAPs for Valuable People Program in Zone B (Phase 3 and 4) (March to June). 13 HHs from Zone B (Phase 3) and 6 HHs from Zone B (Phase 4) are received rice and cooking oil. (10 baskets of rice and 2liters of cooking oil for each household) 2) Providing electricity charges for streetlight for Zone B PAPs at relocation site. (March to June)	TSMC will not be provided for VPP provision from July 2023 as provision period is finished for three years for Phase 3 and 4 as well as electricity charges for relocation site (Phase 1&2) too.	
Common Assets	Relocation		Sin made to	

Myanmar Japan Thilawa Development Limited

Are there any grievances submitted, solved and pending regarding resettlement works?
 If yes, please describe the contents of grievances to fill in below the table.

☐ Yes, ✓No

Contents of Grievance	Response/ Countermeasures
There is no grievance during March to August 2023	

10) CSR activities such as Community Support Program
- Are there any CSR activities implemented in this monitoring period?

Yes, No

If yes, please describe the outline of CSR activities implemented to fill in below the table.

Date	Activities	Description (Location, Participant etc)	Available Photos
4,5 March 2023	All Locators Sepak Takraw Championships 2023	The TSEZ All Locators Sepak Takraw Championships was also held at MJTD's rental area with the total 31 teams from 21 locators and the Foster Electric (Thilawa) Co., Ltd won the Champion title of TSEZ All Locators Sepak Takraw Championships and the second place by RK Yangon Steel Co., Ltd, the third place by Chemical Industries Co., Ltd and the Grace Award (the fourth place) was awarded to PEB Steel Co., Ltd.	Tablean kontrad Frameror, Janes Monera 1917 ton., 2003

28,29,30 March 2023	Food assistance program	Donated 10-kg rice bags to 1,700 hardship households in neighboring communities of TSEZ which are Shwe Pyauk Village Tract, Aye Mya Thida Ward and Shwe Pyi Thar Yar Ward (Kyauk Tan Township) and Ah Lwan Suk Village (Thanlyin Township) and 5-Bags for each to six monasteries around the Thilawa SEZ	
5 April 2023	TSEZ CSR Planning Meeting	Hosted at MJTD's multipurpose hall, total 26 locators joined the meeting	
27 April 2023	Employees Health Care Program (Covid- 19 Vaccination) to employees in TSEZ	At Foster Electric	N/A

25,29,30,31 May 2023	Cash Assistance Program to Elder people 80years and above	Provide 100,000 MMK to 121 elderly people who are age of 80years and above from five villages of neighboring communities, there are 38 Elders from Thida Myaing Ward, 19 from Ah Lwan Suk Village Tract, 30 from Shwe Pyauk Village Tract, 5 from Aye Mya Thida Ward and 29 from Shwe Pyi Thar Yar Ward	
29 May 2023	Renovation and Repair Education Facilities for safe learning environment (Two schools in PACs)	Renovation work to 2 class rooms for KG students (160 nos) at Myaing Thar Yar High School	
18 May 2023	Renovation and Repair Education Facilities for safe learning environment (Two schools in PACs)	Flooring filling and Wall plastering work at Primary School at Ah Lwan Suk Village	- 17

			90,7 m m
May, June, July, August 2023	Scholarship/Provision of academic coverages for outstanding students around PACs		N/A
May, June 2023	Employees Health Care Program (Covid- 19 Vaccination) to employees in TSEZ	19 Vaccines at Thilawa SEZ for about 8,700	N/A
June, July 2023	Support to public access of bus-shutter (Bus - stop) alongside Dagon- Thilawa Road	Thilawa Road	
			S MIJTO

June, July, August 2023	Scholarship/ Provision of academic coverages for outstanding students around PACs	Provide the TSEZ Monthly Scholarship/Student Grant for High School Students at Two Highschool around PACs	
7 July 2023	Employees Health Care Program For the COVID-19 vaccination program for employees in TSEZ (above 650 employees)	COVID-19 vaccination program for employees in TSEZ (above 650 employees)	N/A
20 July 2023	Renovation and Repair Education Facilities for safe learning environment (Aye Mya Thida High School)	Provide water resistant form for Roof Repairing Work at Aye Mya Thid High School	

17 August 2023	Workshop on Promotion for a Safe Working Environment	Hosted on 17 th August at MJTD Multipurpose Hall and a total of 79 representatives from 40 locators joined the workshop	
March to August 2023	Electricity Support Program	At Moe Kyo Swan Monastery	N/A

End of Document

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3 (Operation phase)

Appendix-A

Water and Waste Water Monitoring Report February 2023

WATER QUALITY MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA IN THILAWA SEZ ZONE B (PHASE 1, 2 & 3 OPERATION STAGE)

(Bi-Monthly Monitoring)

February 2023 Myanmar Koei International Ltd.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION
1.1 General
CHAPTER 2: WATER QUALITY MONITORING
2.1 Monitoring Items
2.2 Description of Sampling Points
2.3 Monitoring Method
2.4 Monitoring Period
2.5 Monitoring Results
CHAPTER 3: CONCLUSION AND RECOMMENDATIONS
APPENDIX-1 FIELD SURVEY PHOTOSA1-1
APPENDIX-2 LABORATORY RESULTS
LIST OF TABLES
LIST OF TABLES
Table 2.1-1 Monitoring Items for Water Quality
Table 2.1-1 Monitoring Items for Water Quality
Table 2.1-1 Monitoring Items for Water Quality
Table 2.1-1 Monitoring Items for Water Quality Table 2.2-1 Outline of Sampling Points Table 2.3-1 Analytic Method for Water Quality Table 2.4-1 Sampling Time of Each Point
Table 2.1-1 Monitoring Items for Water Quality
Table 2.1-1 Monitoring Items for Water Quality
Table 2.1-1 Monitoring Items for Water Quality
Table 2.1-1 Monitoring Items for Water Quality

CHAPTER 1: INTRODUCTION

1.1 General

Thilawa Special Economic Zone (SEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd. (MJTD) has a responsibility to carry out regular monitoring in the industrial area of Zone B in accordance with the approved Environmental Impact Assessment (EIA) report and Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area. As for the monitoring of the water quality, total four sampling points are set for water quality survey, named SW-2, SW-4, SW-7 and GW-2 have been monitored in Thilawa SEZ and its surrounding area in timely manner. Among the four locations, SW-7 is main discharged point of Zone B during the operation stage. Moreover, GW-2 is monitored as a reference of existing tube well which located in the monastery compound of Phalan village. Location of sampling points for water quality monitoring is shown in Figure 1.1-1.

Source: Google Earth

Figure 1.1-1 Location of Sampling Points of Water Quality Monitoring

CHAPTER 2: WATER QUALITY MONITORING

2.1 Monitoring Items

Sampling points and parameters for water quality monitoring are determined to cover the environmental monitoring plan of the EIA report.

Water quality sampling was carried out at four locations. Among the four locations, water flow measurement was carried out at two locations (SW-2 and SW-4) where can be measured by current meter. However, water flow measurement cannot be conducted with current meter at one location (SW-7) because water gate is closed. Monitoring items and sampling points are summarized in Table 2.1-1.

Table 2.1-1 Monitoring Items for Water Quality

No.	Parameters	SW-2	SW-4	SW-7	GW-2	Remarks
1	Water Temperature	0	0	0	0	On-site measurement
2	pH	:0	0	0	0	On-site measurement
3	DO	.0	0	0	0	On-site measurement
4	BOD(5)	n	0	0	0	Laboratory analysis
5	COD(Cr)	0	0	0	0	Laboratory analysis
6	Total Nitrogen (T-N)	0	0	0	G	Laboratory analysis
7	Suspended Solids	0	0	0	0	Laboratory analysis
8	Total Coliform	:0	0	.0.	0	Laboratory analysis
9	Total Phosphorus (T-P)	0	0	· O	0	Laboratory analysis
10	Color	0	0	0	- 0	Laboratory analysis
11	Odor	0	0	0	0	Laboratory analysis
12	Oil and Grease	0	:0	:0	0	Laboratory analysis
13	Total Dissolved solids (TDS) (Self-monitoring)	0	0	0	0	Laboratory analysis
14	Iron (Self-monitoring)	0	0	0	ö	Laboratory analysis
15	Mercury (Self-monitoring)	0	Ď.	0	0	Laboratory analysis
16	Escherichia Coli (Self-monitoring)	24	22	0	0	Laboratory analysis
17	Flow Rate	0	0	34	- 3	On-site measurement

Source: Myanmar Koei International Ltd.

2.2 Description of Sampling Points

The outline of sampling points is mentioned in Table 2.2-1. The photos of conducting field survey at each sampling points are mentioned in Appendix-1.

Table 2.2-1 Outline of Sampling Points

No.	Station	Detailed Information
		Coordinate- N - 16° 40′ 20.69″, E - 96° 17′ 18.04″
1	SW-2	Location - Upstream of Shwe Pyauk Creek
	STANDARDES:	Survey Item - Surface water sampling and water flow rate measurement
		Coordinate- N - 16° 39' 42.84", E - 96° 16' 27.42"
2	SW-4 SW-7	Location - Downstream of Shwe Pyauk Creek
		Survey Item - Surface water sampling and water flow rate measurement
		Coordinate - N - 16° 40′ 13.25″, E - 96° 17′ 5.66″
3		Location - Outlet of retention pond of Zone B before connecting to Shwe Pyauk Creek
		Survey Item - Discharge water sampling
		Coordinate - N - 16° 39' 25:30", E - 96° 17' 15:60"
4	GW-2	Location - In the monastery compound of Phalan village
		Survey Item - Ground water sampling

Source: Myanunar Koei International Ltd.

SW-2 (Reference Point)

SW-2 was collected at the upstream of Shwe Pyauk creek. This sampling point is located in the northeast of Zone B area and at the south of Dagon-Thilawa road. The surrounding areas are Zone A in the northwest and local industrial zone in the east respectively.

SW-4 (Reference Point)

SW-4 was collected at the downstream of Shwe Pyauk creek, after mixing of discharge water from local industrial zone, Thilawa SEZ Zone A and Zone B, which is flowing from east to west and then entering into the Yangon River. The distance is about 2.15 km downstream of SW-2. This sampling point is located in the west of Zone B area and in the south of Dagon-Thilawa road. The surrounding areas are Zone A in the northeast, local industrial zone in the east and paddy fields in the south and west respectively.

SW-7 (Discharged Point)

SW-7 is main discharged point of Zone B during operation stage. The distance is about 434 m downstream of SW-2. This sampling point is located at outlet of retention pond of Zone B, in the north of Zone B area and in the south of Dagon-Thilawa road. The surrounding areas are Zone A in the north and local industrial zone in the east respectively.

GW-2 (Reference of Existing Tube Well)

GW-2 was collected from tube well as ground water sample. It is located in the monastery compound of Phalan village. The surrounding areas are Thilawa SEZ Zone A in the north, Phalan village in the south and fields in the west and local industrial zone in the northeast and operation of Thilawa SEZ Zone B in the east and northeast respectively.

2.3 Monitoring Method

All water samples were collected with cleaned sampling bottles and analyzed by the following standard method as shown in Table 2.3-1. All samples were kept in iced boxes keeping at 2-4 °C and were transported to the laboratory. Among the parameters; water temperature, pH and DO were measured by the on-site instrument "Horiba, U-52" and water flow rate was also conducted by using the on-site instrument "JFE Digital Current Meter".

Table 2.3-1 Analytic Method for Water Quality

No.	Parameter	Method
1	Water Temperature	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
2	pH	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
3	Suspended Solids (SS)	APHA 2540D (Dry at 103-105°C Method)
4	Dissolved Oxygen (DO)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
5	BOD(5)	APHA 5210 B (5 days BOD Test)
6	COD(Cr)	APHA 5220D (Close Reflux Colorimetric Method)
7	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)
8	Total Nitrogen (T-N)	HACH Method 10072 (TNT Persulfate Digestion Method)
9	Total Phosphorous (T-P)	APHA 4500-P E (Ascorbic Acid Method)
10	Color	APHA 2120C (Spectrophotometric Method)
11	Odor	APHA 2150 B (Threshold Odor Test)
12	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)
13	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
14	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
15	Total Dissolved Solids (TDS)	APHA 2540C (Total Dissolved Solids Dried at 180°C Method)
16	Escherichia Coli	APHA 9221 F (Escherichia Coli Procedure Using Fluorogenic Substrate)
17	Flow Rate	Detection of Electromagnetic Elements (Real-time measurement by AEM 213-D Digital Current Meters)

Source: Myanmar Koei International Ltd.

2.4 Monitoring Period

Water quality and water flow rate monitoring were conducted on 7 February 2023, and sampling time is shown in Table 2.4-1 to avoid tidal effect. The tide record for Yangon River, Myanmar 7 February 2023 is shown in Table 2.4-2.

Table 2.4-1 Sampling Time of Each Point

No.	Station	Sampling Time
1	SW-2	7/02/2023 14:17
2	SW-4	7/02/2023 13:42
3	SW-7	7/02/2023 11:13
4	GW-2	7/02/2023 11:59

Source: Myanmar Koei International Ltd.

Table 2.4-2 Tide Record for Yangon River, Myanmar

Date	Time	Height	Tide Conditions
	00:52	0.62	Low Tide
7/02/2022	05:36	5.41	High Tide
7/02/2023	13:27	0.34	Low Tide
	17:54	5.23	High Tide

Source: Myanmar Port Authority, Tide Table for the Yangon River and Elephant Point, 2023.

2.5 Monitoring Results

Results of water quality monitoring at discharged point, discharged creek are summarized in Table 2.5-1. Analytical results of the laboratory are described in Appendix-2. The results were compared with the target value of effluent water quality discharged to water body stipulated in the EIA report.

2.5.1 Results of Discharged Point and Discharged Creek

As the comparison with the target value, the results of pH, suspended solid (SS), total coliform and total dissolved solid (TDS) exceeded the target values.

Result of Discharged point

As for the result of total coliform of surface water, result at the main discharging point of Zone B (SW-7) before discharging to the creek, exceeded the target value due to the expected reason; the potential expected reason might be natural bacteria existed in all area of Zone B because there are various kinds of vegetation and creature such as birds, and small animals in and along the retention pond.

Since the composition of the total coliform include bacteria from natural origin, and even after total coliform do not affect human health directly, self-monitoring for E. Coli analysis was carried out to identify health impact by coliform bacteria. As for the result of E. Coli of surface water at the main discharging point of Zone B (SW-7), the result was under the reference value. Therefore, although the target value of total coliform was exceeded at the main discharging point of Zone B (SW-7) but it is considered that there is no significant impact on human health.

Result of Reference Monitoring points (Discharged Creek)

As for the result of pH, results at the surface water monitoring point (SW-2) exceeded the target value might be due to wastewater discharged that may contains detergents and soap-based products from the local industrial zone outside of Thilawa SEZ.

As for the result of SS and TDS, results at the surface water monitoring point (SW-4) exceeded the target values. The exceeded results for SS and TDS maybe due to two expected reasons; i) delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to backflow by tidal fluctuation.

As for the result of total coliform, results at surface water monitoring points (SW-2) and (SW-4) exceeded the target value due to three expected reasons; i) natural bacteria existed in discharged creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek and ii) wastewater from the local industrial zone outside of Thilawa SEZ and iii) delivered from surrounding area by tidal effect.

Table 2.5-1 Results of Water Quality Monitoring at Discharged point and Discharged Creek

No.	Parameters	Unit	SW-2	SW-4	SW-7	Target Value (Reference Value for Self-Monitoring)
1	Water Temperature	*C	29	29	27	≤35
2	pH		9.2	8.1	8.4	6-9
3	Suspended Solid (SS)	mg/l	26	78	30	50
4	Dissolved Oxygen (DO)	mg/l	11.84	6.63	5.52	
5	BOD(5)	mg/l	5.51	5.07	4.39	30
6	COD(Cr)	mg/l	22.4	16.2	16.4	125
7	Total Nitrogen (T-N)	mg/l	1.5	0.9	1.8	80
8	Total Phosphorus (T-P)	mg/l	0.09	< 0.05	0.07	2
9	Color	TCU (True Color Unit)	14.37	3.69	3.82	150
10	Odor	TON (Threshold Odor Number)	1	1	1	9
11	Total Coliform	MPN/100ml	92000.0	54000.0	2300.0	400
12	Oil and Grease	mg/l	< 3.1	< 3.1	< 3.1	10
13	Total Dissolved solids (TDS)	mg/l	1402	3882	1792	2000
14	Iron	mg/l	0.264	0.316	1.080	3.5
15	Mercury	mg/l	≤ 0.002	≤ 0.002	≤ 0.002	0.005
16	Escherichia Coli	MPN/100ml	(5)	51	2.0	(1000)* (CFU/100ml)
17	Flow Rate	m³/s	0.001	0.122	- 25	

Note: Red color means exceeded value than target value.

Source: Myanmar Koei International Ltd.

^{*}Note: Based on the water utilization at discharged creek, the quality standard for water baths in Japan, (Ministry of Environment, 1997) is set as a reference value for self-monitoring of E. coli for surface water monitoring. However, due to limitation of capacity for analytical laboratory in Myanmar, the method to analyze the "Colony Forming Unit (CFU)" is not available in Myanmar. Therefore, the results of "Most Probable Number (MPN)" are assumed similar to CFU values and compared with reference values. Once the method to analyze the CFU will be available in Myanmar, the analytical method will be changed.

2.5.2 Result of Reference Tube Well

Result of water quality monitoring at reference tube well monitoring point is shown in Table 2.5-2. As the comparison with the target value, the result of iron exceeded the target value.

As for the result of the iron, the result at the monitoring point of reference tube well (GW-2) exceeded the target value. Comparison with previous monitoring results of reference tube well (GW-2), the iron concentration results ranged from 3.076 mg/l (August, 2019) – 9.182 mg/l (August, 2022) and most of the iron concentration measured results (from April, 2019 to February, 2023) exceeded the target value except the iron concentration result of August, 2019 and April, 2022. Therefore, the possible reasons may due to the influence of natural origin (iron can reach out from soil by run-off). In Yangon, soil is naturally rich in iron.

Table 2.5-2 Results of Water Quality Monitoring at Reference Tube Well

No.	Parameters	Unit	GW-2	Target Value (Reference Value for Self-Monitoring)
1	Water Temperature	°C	28	≤35
2	pH	-	7.1	6-9
3	Suspended Solid (SS)	mg/l	-6	50
4	Dissolved Oxygen (DO)	mg/l	5.66	*:
5	BOD ₍₅₎	mg/l	3.86	30
6	COD(Cr)	mg/l	< 0.7	125
7	Total Nitrogen (T-N)	mg/I	1.7	80
8	Total Phosphorous (T-P)	mg/l	0.66	2
9	Color	(True Color Unit)	14,21	150
10	Odor	TON (Threshold Odor Number)	1	25
11	Total Coliform	MPN/100ml	13.0	400
12	Oil and Grease	mg/l	< 3.1	10
13	Total Dissolved solids (TDS)	mg/l	190	2000
14	Iron	mg/l	5.620	3.5
15	Mercury	mg/l	≤ 0.002	0.005
16	Escherichia Coli	MPN/100ml	< 1.8	(100)* (MPN/100ml)
17	Flow Rate	m³/s		(5)

Note: Red color means exceeded value than target value.

*Note: Based on the water utilization at monitoring point for ground water, B1(Irrigation water) of National Technical Regulation on Surface Water Quality in Vietnam (No. QCVN 08: 2008/BTNMT) is set as a reference value of selfmonitoring for ground water monitoring.

Source: Myanmar Koei International Ltd.

CHAPTER 3: CONCLUSION AND RECOMMENDATIONS

'As described in Chapter 2 (Section 2.5), the results of pH at (SW-2), suspended solids (SS) and total dissolved solids (TDS) at (SW-4), total coliform at (SW-2, SW-4 and SW-7) in surface water and iron at (GW-2) in ground water exceeded the target value in this monitoring period for operation stage of Thilawa SEZ Zone B.

As for the result of total coliform of surface water, result at the main discharging point of Zone B (SW-7) before discharging to the creek, exceeded the target value due to the expected reason; the potential expected reason might be natural bacteria existed in all area of Zone B because there are various kinds of vegetation and creature such as birds, and small animals in and along the retention pond. As for the result of E. Coli of surface water at (SW-7), the result was under the reference value. Therefore, although the target value of total coliform was exceeded at the main discharging point of Zone B (SW-7) but it is considered that there is no significant impact on human health.

There are some possible reasons for exceeding the target values of pH at (SW-2), suspended solids and total dissolved solids (TDS) at (SW-4) and total coliform at (SW-2 and SW-4). The exceeded result for pH might be due to wastewater discharged that may contains detergents and soap-based products from the local industrial zone outside of Thilawa SEZ. The exceeded results for total coliform might be natural origin such as natural bacteria existed in discharged creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek. The exceeded reason for suspended solids and TDS maybe due to two expected reasons; i) delivered from upstream area such as natural origin and wastewater from the local industrial zone which outside of Thilawa SEZ, ii) delivered from surrounding area by tidal effect.

As for the result of the iron, the result at the monitoring point of reference tube well (GW-2) exceeded the target value. Comparison with previous monitoring results of reference tube well (GW-2), the iron concentration results ranged from 3.076 mg/l (August, 2019) - 9.182 mg/l (August, 2022) and most of the iron concentration measured results (from April, 2019 to February, 2023) exceeded the target value except the iron concentration result of August, 2019 and April, 2022. Therefore, the possible reasons may due to the influence of natural origin (iron can reach out from soil by run-off). In Yangon, soil is naturally rich in iron.

As for future subject for main discharged points of Thilawa SEZ Zone B, the following action may be taken to maintain the target value of total coliform and appropriate water quality monitoring to continue monitoring Escherichia coli (E. coli) level to identify health impact by coliform bacteria.

find of the Document

APPENDIX-1 FIELD SURVEY PHOTOS

FOR DISCHARGED POINT OF THILAWA SEZ ZONE B

Surface water sampling and onsite measurement at SW-7

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGED POINTS AND BASELINE OF DISCHARGED CREEK

Surface water sampling and onsite measurement at SW-2

Surface water sampling and onsite measurement at SW-4

Ground water sampling and onsite measurement at GW-2

APPENDIX-2 LABORATORY RESULTS

FOR DISCHARGED POINT

DOWA

Report No.: | GEN LAB 202302071

Revision No. | 1

Report Date | 20 February, 2023

Application No. | 0001-0001

Analysis Report

Client Name

Myanmar Kosi Internacional LTD (MKI)

Address

No. 36/A, 1st Floor, Grand Phy Sent Condominam, Phy Sein Road, Tamwe Township, Yangon, Myanmar

Project Name

Environment Monitoring report for Zone A & 9

Sample Descrution

Sample Name Sample No.

Waste Profile No.

MCI SW 7-0207

swrong new 7 February, 2023

Sampling By - Customer

. W-2102041

Sample Received Data 7 February, 2023

Analytical Date 7-20/02/2023

No.	Parameter	Method	Unit	Result	1.00
13	55	APHA 25400 (Ory at 183:105°C Method)	reg/1	36	
2	800 (5)	APHA 5210 B (5 Days 600 Test)	mg/l	4.39	0.00
3	cop (cr)	APHA 52200 (Close Reflux Colonmetric Method)	mg/1	16.4	0.7
4	Oil and Grease	APHA SSZUB (Partition-Grawmetric Method)	mg/l	<3.1	3.1
5	Cefor	APHA 2120C (Spectrophotometric Method)	TCU	3.82	0,00
0	Total Nitrogen	HACH Method 19073 (TNT Persulfate Digestion Method)	mg/l	(1.8	0.5
7	Total Phosphorous	APHA 4500 -P E (Ascorbic Acid Method)	Tig/T	0.07	0.05
e	TDS.	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/l	1792	
Ģ.	Chromium	APHA 3120 B (Inductively Coupled Plasma (TCP) Method)	mg/l	40 002	0.00
10	March by	APHA 3120 B (Inductively Coupled Plasma (ECP) Method)	mgd	€0.002	0.000
11	Iran	APHA 3120 B [Inductively Chapted Plasma (ICP) Method)	mg/t	1.080	0.000
13.	Total Collings	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100H	2300.0	1.8
13	Oder	APHA 2150 8 (Threshold Odor Test)	TON	i	0
14	Escherichia Coli	APHA 9221 F Escherichia Coli Procedule Using Fluorogenic Substrate	HPW100ml	2.0	1.8

LDQ - Limit of Quantitypes

APHA - American Public ReaAll Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Michigds for the Pasiemisters of Water and Wastewater, 22nd addition

BO- 2- 23 Cherry Myint Their

Supervisor

Approved By

Hise 50 Feb 20, 2023

Makaging Delector

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGED POINTS AND BASELINE OF DISCHARGED CREEK

DOWA

SALDER DOWN LID STEED STARRAGE CO., LTD.
146 No. F. D. Branch SEE Force A. Hongsto Magner, Museuman
Research See For the Latter & Magnerial

Report No. | GEM-LAB-202307968

Revision No. - 1

Report Date : 20 February, 2023 Application No. : 6003-C001

Analysis Report

Client Name

Hyanmar Knei International (JD (MKI)

Address

: No. 36/A, 1st Floor, Grand Pho Sein Condominum, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

Environment Monitoring report for Zonn A & B

Sample Description

MKI-SW-2-0207

Tammeg Date: 7 February, 2023

Sample Name Sample No.

W-2302038

Sampling By Customer

Waste Profile No. : -

Sample Received Date: 7 February, 2023

Analytical Date: 7:20/02/2023

No.	Parameter	Method	Unit	Result	rod
1	SS	APHA 25400 (Dry at 103-105'C Method)	mg/l	26	-
2	BOD (5)	APHA 5250 B (5 Clays BOD Test)	mg/l	5.51	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colonmetric Method)	mg/l	22.4	0.7
4	Oil and Grease	APHA 55208 (Partition-Gravimetric Method)	ma/t	<3.1	3.1
5	Color	APISA 2120C (Spectrophotometric Method)	TCD	14.37	0.00
ń	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestron Method)	/mg/li	1.5	0.5
7	Total Phosphoraus	APHA 4500-P E (Ascorbic Acid Method)	mg/t	0.09	0.05
8	TDS	APRA 2540 C (Total Dessolved Solids Dired at 180°C Method)	mg/l	1402	-
9	Chremium	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	s0.002	0.002
10	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	терт	≤0,002	0.002
13	iron	APTIA 3120 ft (Inductively Coupled Rissma (ICP) Method)	Typer:	0.264	0.002
12	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	M0W/105mi	92000 D	1.8
13	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	0

Remark

LOQ - Limit of Quantitation

APHA - American Public meeth Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Esamination of Water and Wastewater, 22nd edition

WHITE DATE

Cherry Myint Their

20-9-49

Supervisor

LAB Peb en,enes GEM

Approved By

Hagher Tomo Feb 20,2023

Managing Director

REPORT BOUT IS DRIVED BY LAMPETTED FOR MAKING MARKETTED FOR ARMATYS.

THE ARMATIS REPORT SHALL MOT BUT REPORTS OF THE CONTROL WITHOUT HEATTHE ARMATIS. OF THE CARDINATION OF THE CARDINA

DOWA

INCLUDE HOME COURTS IN ANABOMS CE., TO LIST be TO THOMAS SEEDING COMPANY TO THE PROPERTY OF TH

Report No. - GEK-LAB-202302069

Kevision No. 1

Report Date | 20 February, 2023

Application No. - 0001 C001

Analysis Report

Client Name Myanmar Koel International LTD (MK1)

Address No., 36/A, 1st Floor, Grand Pho Sein Condominum, Pho Sein Road, Familier Township, Yangon, Myanman

Project Name Environment Manitoring report for Zone A & B

Sample Description

 Sample Name
 MKI-SW-4-0207
 Senging Date : 7 February, 2023

 Sample No.
 W-2302039
 Sampling By Customer

Waste Profile No Sample Received Date 7 February, 2023

Analytical Ditte : 7:20/02/2025

No.	Parameter	Method	Unit	Result	FOG
1	5%	APNA 25480 (Dry.at 103-105°C Method)	mg/l	78	-
2	B00 (5)	APHA 5210 B (5 Days BOD Test)	ngri	5.07	0.00
3	CDD (Cr)	APHA 5220D (Close Reflux Columnetric Method)	mg/l	16.2	0.7
4	Oil and Grease	APHA SS208 (Partition Gravimetric Melboil)	mg/I	<3.1	3.1
5	Color	APHA 2120C (Spectriphotomeric Method)	тец	3.69	0.00
6	Total Mitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	myd	0.9	6.5
7	Yotal Phosphorous	APHIR (SSS-P E (Ascorbic Acid Method)	mg/l	40.05	6.05
8	105	APHA 7540 C (Total Dissolved Solids Uned at 180°C Method)	mg/l	1882	-
9	Chromium	APYA 3120.6 (Inductively Coupled Plasma (ICP) Method)	mg/l	50.502	0.002
10	Hercury	APriA 3120 5 (3nductively Coupled Plasma (3CP) Method)	mgd	60.002	0.002
11	bron	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	0.315	0.002
17	Total Coliforn	APHA 92218 (Standard Total Cobhorn Fermentation Technique)	WPM/100ml	54000.0	1.0
13	Odor	APHA 2150 8 (Threshold Odor Test)	TON	10	

Remark LOQ - Limit of Quantitation

APINA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Essenination of Water and Westersetz, Jind edition

Analysed fly

Cherry Myint Their

Supervisor

LAB Feb 80,9093 GEM

Approved By:

1400 Namu Feb 20, 2023

Managing Director

DOWA

Report No. : GEM-LAB-202302072

Revision No. | 1

Report Date : 30 February, 2023 Application No. : 0001-C001

Analysis Report

Client Name

Myanmar Koel International LTD (MKI)

Address

No., 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar-

Project Name

Environment Monitoring report for Zone A & B

Sample Description

Sample Name HKI-GW-2-0297

Sampling Date : 7 February, 2023

Sample No.

W-2302642

Sampling By : Customer

Waste Profile No.

Sample Received Date : 7 February, 2023

Analytical Date : 7-20/02/2023

No.	Parameter	Method	Unit	Result	rod
1	SS	APHA 23400 (Dry at 103-105°C Method)	mg/t	6	
2	800 (5)	APHA 3210 B (5 Days BOD Test)	mg/l	3.86	0.00
2	COO (Cr)	APHA 52200 (Close Reflux Colorimetric Method)	thight.	≪0,7	0.7
+	Oll and Greate	APHA 55208 (Partition-Gravimetric Method)	l/g/s	<3.1	3.1
5	Calar	A3HA 2129C (Spectrophotometric Method)	trou	14.25	0.00
ñ	Total Nitrogen	HACH Method 10072 (TNT Persuitate Digestion Method)	mg/l	1.7	0.5
Ţ	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.66	0.05
8	TOS	API/A 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/l	190	-
9	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICF) Method)	mg/I	≤0.002	0.003
10	Hercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	±0.002	0.003
11	Srom	APHA 3120 B (Inductively Coupled Pleams (ICP) Method)	mg/l	5.620	0.002
12	Total Coliform	APHA 92218 (Standard Total Collision Permentation Technique)	MPN/100mi	13.0	1.9
13	Odor	APHA 2150 B (Threshold Older Text)	TON	1	0
14	Escherichia Coli	APHA 9221 F Escherichia Coli Procedure Uning Fluorogenic Substrate	MPN/100mi	41.8	1.6

Remark.

LOQ - Limit of Quantitation

APHA - American Public Realth Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wasteweier, 22nd edition

20-E-23

Cherry Myint Their

Supervisor

Approved by

teb 80,8083 Manading Director

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3 (Operation phase)

Appendix-B

Water and Waste Water Monitoring Report April 2023

WATER QUALITY MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA IN THILAWA SEZ ZONE B (PHASE 1, 2 & 3 OPERATION STAGE)

(Bi-Monthly Monitoring)

April 2023 Myanmar Koei International Ltd.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION
1.1 General
CHAPTER 2: WATER QUALITY MONITORING2
2.1 Monitoring Items
2.2 Description of Sampling Points
2.3 Monitoring Method4
2.4 Monitoring Period4
2.5 Monitoring Results5
CHAPTER 3: CONCLUSION AND RECOMMENDATIONS7
APPENDIX-1 FIELD SURVEY PHOTOSA1-1
APPENDIX-2 LABORATORY RESULTS
LIST OF TABLES
Table 2.1-1 Monitoring Items for Water Quality2
Table 2.2-1 Outline of Sampling Points
THE TABLE 1 I MADE 16 THE TABLE 18 THE TABLE
Table 2.3-1 Analytic Method for Water Quality4
Table 2.3-1 Analytic Method for Water Quality
Table 2.4-1 Sampling Time of Each Point4
Table 2.4-1 Sampling Time of Each Point
Table 2.4-1 Sampling Time of Each Point4
Table 2.4-1 Sampling Time of Each Point

CHAPTER 1: INTRODUCTION

1.1 General

Thilawa Special Economic Zone (SEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd. (MJTD) has a responsibility to carry out regular monitoring in the industrial area of Zone B in accordance with the approved Environmental Impact Assessment (EIA) report and Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area. As for the monitoring of the water quality, total four sampling points are set for water quality survey, named SW-2, SW-4, SW-7 and GW-2 have been monitored in Thilawa SEZ and its surrounding area in timely manner. Among the four locations, SW-7 is main discharged point of Zone B during the operation stage. Moreover, GW-2 is monitored as a reference of existing tube well which located in the monastery compound of Phalan village. Location of sampling points for water quality monitoring is shown in Figure 1.1-1.

Source: Google Earth

Figure 1.1-1 Location of Sampling Points of Water Quality Monitoring

CHAPTER 2: WATER QUALITY MONITORING

2.1 Monitoring Items

Sampling points and parameters for water quality monitoring are determined to cover the environmental monitoring plan of the EIA report.

Water quality sampling was carried out at four locations. Among the four locations, water flow measurement was carried out at two locations (SW-2 and SW-4) where can be measured by current meter. However, water flow measurement cannot be conducted with current meter at one location (SW-7) because water gate is closed. Monitoring items and sampling points are summarized in Table 2.1-1.

Table 2.1-1 Monitoring Items for Water Quality

No.	Parameters	SW-2	SW-4	SW-7	GW-2	Remarks
1	Water Temperature	0	0	0	0	On-site measurement
2	pH	0	0	0	5	On-site measurement
3	DO	0	0	0	0	On-site measurement
4	BOD(5)	0	0.	0	0	Laboratory analysis
5	COD(Cr)	0	0	(0)	0	Laboratory analysis
6	Total Nitrogen (T-N)	0	0	0	0	Laboratory analysis
7	Suspended Solids	0	0	0	0	Laboratory analysis
8	Total Coliform	0	0	.0	0	Laboratory analysis
9	Total Phosphorus (T-P)	0	0	- 6	0	Laboratory analysis
10	Color	0	0	0	0	Laboratory analysis
11	Odor	0	0	0	0	Laboratory analysis
12	Oil and Grease	0	0	0	0	Laboratory analysis
13	Total Dissolved solids (TDS) (Self-monitoring)	0	0	a	o	Laboratory analysis
14	Iron (Self-monitoring)	.93	.0	0	0	Laboratory analysis
15	Mercury (Self-monitoring)	0	0	o	0	Laboratory analysis
16	Escherichia Coli (Self-monitoring)		360	10)	0	Laboratory analysis
17	Flow Rate	0	0	-		On-site measurement

Source: Myanmar Koei International Ltd.

2.2 Description of Sampling Points

The outline of sampling points is mentioned in Table 2.2-1. The photos of conducting field survey at each sampling points are mentioned in Appendix-1.

Table 2.2-1 Outline of Sampling Points

Station	Detailed Information
	Coordinate- N - 16° 40' 20.69", E - 96° 17' 18.04"
SW-2	Location - Upstream of Shwe Pyauk Creek
	Survey Item - Surface water sampling and water flow rate measurement
SW-4	Coordinate- N - 16° 39' 42.84", E - 96" 16' 27.42"
	Location - Downstream of Shive Pysisk Creek
	Survey Item - Surface water sampling and water flow rate measurement
1	Coordinate - N - 16° 40' 13.25", F - 96° 17' 5.66"
SW-7	Location Outlet of retention pond of Zone B before connecting to Shwe Pyank Creek
	Survey Item - Discharge water sampling
1	Coordinate - N - 167 397 25.30", E - 96" 17" 15.60"
GW-2	Location - In the monastery compound of Phalan village
1935 AST 10	Survey Item - Ground water sampling
	SW-2 SW-4 SW-7

Source: Myanniar Koci International Ltd.

SW-2 (Reference Point)

SW-2 was collected at the upstream of Shwe Pyauk creek. This sampling point is located in the northeast of Zone B area and at the south of Dagon-Thilawa road. The surrounding areas are Zone A in the northwest and local industrial zone in the east respectively.

SW-4 (Reference Point)

SW-4 was collected at the downstream of Shwe Pyauk creek, after mixing of discharge water from local industrial zone, Thilawa SEZ Zone A and Zone B, which is flowing from east to west and then entering into the Yangon River. The distance is about 2.15 km downstream of SW-2. This sampling point is located in the west of Zone B area and in the south of Dagon-Thilawa road. The surrounding areas are Zone A in the northeast, local industrial zone in the east and paddy fields in the south and west respectively.

SW-7 (Discharged Point)

SW-7 is main discharged point of Zone B during operation stage. The distance is about 434 m downstream of SW-2. This sampling point is located at outlet of retention pond of Zone B, in the north of Zone B area and in the south of Dagon-Thilawa road. The surrounding areas are Zone A in the north and local industrial zone in the east respectively.

GW-2 (Reference of Existing Tube Well)

GW-2 was collected from tube well as ground water sample. It is located in the monastery compound of Phalan village. The surrounding areas are Thilawa SEZ Zone A in the north, Phalan village in the south and fields in the west and local industrial zone in the northeast and operation of Thilawa SEZ Zone B in the east and northeast respectively.

2.3 Monitoring Method

All water samples were collected with cleaned sampling bottles and analyzed by the following standard method as shown in Table 2.3-1. All samples were kept in iced boxes keeping at 2-4 °C and were transported to the laboratory. Among the parameters; water temperature, pH and DO were measured by the on-site instrument "Horiba, U-52" and water flow rate was also conducted by using the on-site instrument "JFE Digital Current Meter".

Table 2.3-1 Analytic Method for Water Quality

No.	Parameter	Method
1	Water Temperature	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
2	pH	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
3	Suspended Solids (SS)	APHA 2540D (Dry at 103-105°C Method)
4	Dissolved Oxygen (DO)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
5	BOD(5)	APHA 5210 B (5 days BOD Test)
6	COD _(Cr)	APHA 5220D (Close Reflux Colorimetric Method)
7	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)
8	Total Nitrogen (T-N)	HACH Method 10072 (TNT Persulfate Digestion Method)
9	Total Phosphorous (T-P)	APHA 4500-P E (Ascorbic Acid Method)
10	Color	APHA 2120C (Spectrophotometric Method)
11	Odor	APHA 2150 B (Threshold Odor Test)
12	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)
13	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
14	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
15	Total Dissolved Solids (TDS)	APHA 2540C (Total Dissolved Solids Dried at 180°C Method)
16	Escherichia Coli	APHA 9221 F (Escherichia Coli Procedure Using Fluorogenic Substrate)
17	Flow Rate	Detection of Electromagnetic Elements (Real-time measurement by AEM 213-D Digital Current Meters)

Source: Myanmar Koei International Ltd.

2.4 Monitoring Period

Water quality and water flow rate monitoring were conducted on 25 April 2023, and sampling time is shown in Table 2.4-1 to avoid tidal effect. The tide record for Yangon River, Myanmar 25 April 2023 is shown in Table 2.4-2.

Table 2.4-1 Sampling Time of Each Point

No.	Station	Sampling Time
1	SW-2	25/04/2023 08:52
2	SW-4	25/04/2023 13:45
3	SW-7	25/04/2023 09:19
4	GW-2	25/04/2023 08:23

Source: Myanmar Koei International Ltd.

Table 2.4-2 Tide Record for Yangon River, Myanmar

Date	Time	Height	Tide Conditions
	02:53	0.60	Low Tide
25/04/2023	07:42	4.91	High Tide
	14:21	0.91	Low Tide
	19:40	5.24	High Tide

Source: Myanmar Port Authority, Tide Table for the Yangon River and Elephant Point, 2023.

2.5 Monitoring Results

Results of water quality monitoring at discharged point, discharged creek are summarized in Table 2.5-1. Analytical results of the laboratory are described in Appendix-2. The results were compared with the target value of effluent water quality discharged to water body stipulated in the EIA report.

2.5.1 Results of Discharged Point and Discharged Creek

As the comparison with the target value, the results of suspended solid (SS), total coliform and total dissolved solids (TDS) exceeded the target values.

Result of Discharged point

As for the result of SS and TDS, result at the main discharging point of Zone B (SW-7) before discharging to the creek, exceeded the target value due to the surface water run-off from bare land in Zone B.

Result of Reference Monitoring points (Discharged Creek)

As for the result of TDS, results at the surface water monitoring point (SW-2) and (SW-4) exceeded the target values. The exceeded results for TDS maybe due to two expected reasons: i) delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to backflow by tidal fluctuation.

As for the result of total coliform, results at surface water monitoring points (SW-2) and (SW-4) exceeded the target value due to three expected reasons: i) natural bacteria existed in discharged creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek, ii) wastewater from the local industrial zone outside of Thilawa SEZ, and iii) delivered from surrounding area by tidal effect.

Table 2.5-1 Results of Water Quality Monitoring at Discharged point and Discharged Creek

No.	Parameters	Unit	SW-2	SW-4	SW-7	Target Value (Reference Value for Self-Monitoring)
1	Water Temperature	*C	30	33	30	≤ 3.5
2	pH	+	7.6	8.8	8.1	6-9
3	Suspended Solid (SS)	mg/l	50	46	52	50
4	Dissolved Oxygen (DO)	mg/l	5.76	12.13	7.19	
5	BOD(5)	mg/l	10.55	13.92	10.59	30
6	COD _(Cr)	mg/l	31.0	39.9	26.1	125
7	Total Nitrogen (T-N)	mg/l	1.2	1.6	0.4	80
8	Total Phosphorus (T-P)	mg/l	< 0.05	< 0.05	< 0.05	2
9	Color	TCU (True Color Unit)	17.44	10.98	7.21	150
10	Odor	TON (Threshold Odor Number)	1	2	1	9
11	Total Coliform	MPN/100ml	17000.0	4600.0	400,0	400
12	Oil and Grease	mg/l	< 3.1	< 3,1	< 3.1	10
13	Total Dissolved solids (TDS)	mg/l	8162	6284	9874	2000
14	Iron	mg/l	0.062	0.070	0.072	3.5
15	Mercury	mg/l	≤ 0.002	≤ 0.002	≤ 0.002	0.005
16	Escherichia Coli	MPN/100ml		E	9.2	(1000)* (CFU/100ml)
17	Flow Rate	m³/s	0.006	0.114	-	

Note: Red color means exceeded value than target value.

5

^{*}Note: Based on the water utilization at discharged creek, the quality standard for water baths in Japan, (Ministry of Environment, 1997) is set as a reference value for self-monitoring of E. coli for surface water monitoring. However, due to limitation of capacity for analytical laboratory in Myanmar, the method to analyze the "Colony Forming Unit (CFU)" is not available in Myanmar. Therefore, the results of "Most Probable Number (MPN)" are assumed similar to CFU values and compared with reference values. Once the method to analyze the CFU will be available in Myanmar, the analytical method will be changed.

Source: Myanmar Koei International Ltd.

2.5.2 Result of Reference Tube Well

Result of water quality monitoring at reference tube well monitoring point is shown in Table 2.5-2. As the comparison with the target value, the result of total coliform exceeded the target value.

As for the result of total coliform in ground water, results at (GW-2) exceeded the target value. It may be possible due to the poor maintenance of well which can increase the risk of bacteria and other harmful organisms. However, the result of E. Coli of (GW-2) was under the reference value. Therefore, although the target value of total coliform exceeded at monitoring point of (GW-2), it is considered that there is no significant impact on human health.

Table 2.5-2 Results of Water Quality Monitoring at Reference Tube Well

No.	Parameters	Unit	GW-2	Target Value (Reference Value for Self-Monitoring)
1	Water Temperature	.c	27	≤ 35
2	pH	<u> </u>	6.5	69
3	Suspended Solid (SS)	mg/l	4	50
4	Dissolved Oxygen (DO)	mg/l	7.20	
5	BOD(5)	mg/I	3.56	30
6	COD(Cr)	mg/l	< 0.7	125
7	Total Nitrogen (T-N)	mg/l	0.7	80
8	Total Phosphorous (T-P)	mg/l	0.54	2
9	Color	TCU (True Color Unit)	27.06	150
10	Odor	TON (Threshold Odor Number)	1	3.50
11	Total Coliform	MPN/100ml	2700.0	400
12	Oil and Grease	mg/l	< 3.1	10
13	Total Dissolved solids (TDS)	mg/l	182	2000
14	Iron	mg/l	0.108	3.5
15	Mercury	mg/l	≤ 0.002	0.005
16	Escherichia Coli	MPN/100ml	9.1	(100)* (MPN/100ml)
17	Flow Rate	m ³ /s	43	

Note: Red color means exceeded value than target value.

Source: Myanmar Koei International Ltd.

^{*}Note: Based on the water utilization at monitoring point for ground water, B1(Irrigation water) of National Technical Regulation on Surface Water Quality in Victnam (No. QCVN 08: 2008/BTNMT) is set as a reference value of selfmonitoring for ground water monitoring.

CHAPTER 3: CONCLUSION AND RECOMMENDATIONS

As described in Chapter 2 (Section 2.5), the results of suspended solids (SS) at (SW-7), total dissolved solids (TDS) at (SW-2, SW-4 and SW-7), and total coliform at (SW-2 and SW-4) in surface water, and the results of total coliform at (GW-2) in ground water exceeded the target value in this monitoring period for operation stage of Thilawa SEZ Zone B.

As for the result of SS and TDS, result at the main discharging point of Zone B (SW-7) before discharging to the creek, exceeded the target value due to the surface water run-off from bare land in Zone B.

There are some possible reasons for exceeding the target values of TDS and total coliform at (SW-2 and SW-4). The exceeded reason for TDS maybe due to two expected reasons: i) delivered from upstream area such as natural origin and wastewater from the local industrial zone which outside of Thilawa SEZ, and ii) delivered from surrounding area by tidal effect. The exceeded results for total coliform might be due to natural origin such as natural bacteria existed in discharged creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek.

As for the result of the total coliform, the result at the monitoring point of reference tube well (GW-2) exceeded the target value. It may be possible due to the poor maintenance of well which can increase the risk of bacteria and other harmful organisms. However, the result of E. Coli of (GW-2) was under the reference value. Therefore, although the target value of total coliform was exceeded at monitoring point of (GW-2), it is considered that there is no significant impact on human health.

As for future subject for main discharged points of Thilawa SEZ Zone B, the following action may be taken to maintain the target value of SS, TDS and total coliform and appropriate water quality monitoring:

- To continue monitoring Escherichia coli (E. coli) level to identify health impact by coliform bacteria.

End of the Document

APPENDIX-1 FIELD SURVEY PHOTOS

FOR DISCHARGED POINT OF THILAWA SEZ ZONE B

Surface water sampling and onsite measurement at SW-7

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGED POINTS AND BASELINE OF DISCHARGED CREEK

Surface water sampling and onsite measurement at SW-2

Surface water sampling and onsite measurement at SW-4

Ground water sampling and onsite measurement at GW-2

APPENDIX-2 LABORATORY RESULTS

FOR DISCHARGED POINT

DOWA

Report No. : GEM-LAB-202305821

Revision No. : 1

Report Date | 8 May, 2023 Application No. - 0001-C001

Analysis Report

Digit Name

Myanmar Koel International LTD (MKI)

Address

No. 35/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tarriwe Township, Yangon, Myanmar.

Project Name

Environment Manitoring report for Zone A & B

Sample Description

MXI-SW-7-0425

Sampling Date : 25 April, 2023.

Sample Name Sample No. W-2304965

Waste Profile No.

Sampling By : Customer

Sample Received Date : 25 April, 2023 Analytical Date : 25/04-8/05/2023

No.	Parameter	Method	Unit	Result	rod
1	S5	APHA 2540D (Dry at 103 105°C Method)	mg/l	52	-
2	800 (5)	APHA 5210 B (5 Days BOD Test)	mg/l	10.59	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	26.1	0.7
9	Oil and Grease	APHA 55200 (Partition-Gravimetric Method)	mg/t	<3.1	3.1
5	Color	APHA 2120C (Spectrophotometric Method)	TOU	7.21	0.00
6	Tistal Nitrogen	HACH Method 10072 (TNT Persulface Digestion Method)	mg/li	0.4	0.5
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/t	<0.05	0.05
B	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/t	9874	
9	Chromium	APHA 3129 B (Inductively Coupled Plasma (ICP) Method)	mg/i	50.002	0.000
10	Mercury	APHA 3126 B (Enductively Coupled Plasma (ICP) Method)	mgri	±0.002	0.003
11	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.072	0.002
12	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	400.0	1.8
13	Odor	APHA 2150 B (Threshold Odor Test)	TON	1.	0
14	Escherichia Col	APHA 9221 F Escherichia Coli Procedure Using Fluorogenic Substrate	MPNU LODON	9.2	1.8

Remark

LOQ - Limit of Quantilation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By

Ni Ni Aye Lwin Manager

Approved By:

Hideserformol Day 8, 2023 Managing Ovector

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGED POINTS AND BASELINE OF DISCHARGED CREEK

DOWA

Report No. | GEM LAB-202305018

Revision No. 1 T

Report Date : 6 May, 2023 Application No. 1 0003 C001

Analysis Report

Chent Name

Myanmar Koel International LTD (MRI)

Address.

No. 36/A. 1st Floor, Grand Phy Sein Condominium, Phy Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name:

Environment Menitoring report for Zune A & B

Sample Description

Sample Name

MKI-5W-2-0425

Samuring Date: 25 April, 2023.

Sample No.

W-2304082

Sampling By | Customer Sample Received Date 25 April, 2023

Analytical Date : 25/04-8/05/2023

No.	Parameter	Method	Unit	Result	rod
1	55	APHA 25400 (Dry at 103-105°C Method)	109/1	50	-
2	900 (2)	APHA 5210 B (5 Days BOD Test)	rmañ.	10.55	0.00
3	con (cr)	APIIA 5220D (Close Reflux Colorimetric Method)	rng/i	33.0	0.7
4	Oli and Greass	APHA 55200 (Partition-Gravimetric Method)	reg/i	1.6>	3.1
5	Color	APRIA 2120C (Spectrophotometric Method)	100	17.44	0.110
6	Tobal Nitragen	HACH Method 19872 (TNT Persurate Digestion Method)	reg/l	1.2	9.5
7	Total Phosphorous	APHA 4500-II E (Ascorbic Acid Method)	//pm	< 0.05	0.65
0	TOS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	reg/t	8162	
9	Chromium	APHA 3120 B (Inductively Coupled Plasma (SCP) Method)	(ng/l	<0.002	0.002
10	Melcury	APHA 3120 ti (Inductively Coupled Plasma (ICF) Method)	/ng/l	≤0.002	0,002
11	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	reg/l	0.062	0.002
12	Total Cuiffern	APHA 92219 (Standard Total Colform Fermentation Technique)	HPI/100mi	17000.0	1.0
13	Oder	APVIA 2150 B (Threshold Odor Test)	TON	3	

Bernark.

: LOQ - Limit of Quantitation

APHA - Mmencats Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Westewater, 22nd edition

Analysed By

Manager

Approved By

1100 you May 8, 2023

Managing Director

DOWA

400201 ROWA CO SYSTEM MYMORIAN CO . 133 144 No. 5.1. This was life James A, Tangara Region, Marson at Plants No. Fac No. 1453 1. 1809050

Report No.: GEM-LAB-202305019

Revision No. : 1

Report Date : 8 Mey, 2023 Application No. : 0001-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No. 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

Environment Manitoring report for Zone A & 8

Sample Description

Sample Name

MKI-SW-6-0425

Sampling Date : 25 April, 2023

Sample No. | W 2304083

Sampling By : Customer

Wasze Profile No.

Sample Received Date : 25 April, 2023

Analytical Date : 25/04-8/05/2023

No.	Parameter	Method	Unit	Result	LOQ
1	55	APHA 25400 (Dry at 103-105°C Method)	mg/i	46	-
2	800 (5)	APHA 5210 B (5 Days BOD Test)	/mg/l	13.92	0.00
3	C00 (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	39.9	0.7
4	Oil and Grease	APHA 5520B (Partition-Gravmetinc Method)	mg/l	<3.1	3.3
5	Color	APNA 2120C (Spectrophotometric Method)	300	10.98	0,00
6	Tetal Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	1.6	0.5
9	Total Phosphorous	APNA 4500-P E (Ascerbic Acid Method)	mg/l	<0.05	0.05
8	TOS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/i	6284	ु
9	Chromium	APHA 3120 6 (Industriely Epupled Plasma (ICP) Method)	mg/i	≤0.002	0.002
10	Mercury	APHA 3126 B (Industriely Coupled Plasma (ICP) Method)	mg/l	≤0,002	0.002
11	1rmn	APHA 3120 B (Industriely Coupled Plasma (ICP) Method)	mg/s	0.070	0.002
12	Yotal Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100m)	4600.0	1.8
13	Odor	APHA 2150 B (Threshold Odor Test)	TON	2	0

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Weter Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Exemination of Water and Wastewater, 22ing edition

nalysed By

Ni Ni Aye Lwin

al iai rite

LAB
May 8,2023
GEM

Approved By

HELDE YOUR May 8, 2023

Mathaging Director

MINOR RELEASING THE SAME SQUARTED FOR ANALYSIS AND ANALYSIS.

THE ANALYSIS REPORT THAT IN PRESENTED AND ANALYSIS ANALYSIS ANALYSIS REPORT OF THE CAMBRIDGE OF THE CAMBRIDGE AND ANALYSIS ANALYSIS.

DOWA

Report No. | SEM-LAB-202305022

Revision No. : 1

Report Date : 8 May, 2023 Application No. | 0001-C001

Analysis Report

Client Name

- Myanmar Koel (marriational ETD (MKI)

Address

No. 36/A, 1st Floor, Grand Phe Som Condominium, Pho Sein Road, Tamwe Township, Yangon, Myermer

Project Name

Environment Maintoring report for Zone A & B

Sample Description

Sample Name

MKI-GW-2-0425

W-2304066

Sample No. Weste Proble No. Sampling Date: , 25 April, 2023

Serwing By | Customer

Sample Received Date - 25 April, 2023

Analytical Date: 25/04-8/05/2023

No.	Parameter	Method	Unit	Result	LOQ
	55	APHA 2540D (Dry at 103-105°C Method)	.mg/L	÷	-
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/t	3.56	0.00
3	C00 (Cr)	APHA 52200 (Close Reflux Colonmatric Mythod)	mg/f	<0.7	2.7
4	OII and Grease	APHA 55208 (Partition-Gravimetric Method)	mg/t	<3.1	3.1
5	Color	APHA 2120C (Spectrophocometric Method)	TOU	27.06	0.00
6	Total Nitrogen	HACH Nethod 10072 (TNT Persulfate Digestion Mcthod)	mg/l	0.7	0.5
7	Total Phosphorous	APNA 4588-P E (Ascerbic Acid Method)	mg/l	0.54	0.05
0	TDS	APHA 2540 C (Total Drisolved Solids Dried at 180°C Method)	mg/1	182	
9.	Chromium	APHA 3120 B (Inductively Couplet Plasma (ICP) Method)	mg/l	±0.002	0.002
111	Метниту	APHA 3120 B (Inductively Coupled Plasma (ICF) Method)	mg/t	s0.002	0.002
11	Iran	APNA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.108	0.1002
12	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	2700.0	1.8
13	Odus	APHA 2150 B (Threshold Odor Test)	TON	1	0
14	Escherichia Coli	API (A 9221 E Escherichia (cd) Procedure Uning Fluorogenic Substrate	HMV/100ml	193	1.8

LOQ - Limit of Quantitation

APHA - American Public Health Association (API(A), the American Water Works Association (AWWA), and the Weter Environment Federation (WEF), Standard Methods for the Examination of Weter and Wastewater, 12nd edition

Approved By

HONOTONO Mary B, 2023

Harraging Director

Thilawa Special Economic Zone Zone B- Phase 1, 2,3 (Operation phase)

Appendix-C

Water and Waste Water Monitoring Report June 2023

WATER QUALITY MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA IN THILAWA SEZ ZONE B (PHASE 1, 2 & 3 OPERATION STAGE)

(Bi-Annually Monitoring)

June 2023 Myanmar Koei International Ltd.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION1
1.1 General
CHAPTER 2: WATER QUALITY MONITORING2
2.1 Monitoring Items2
2.2 Description of Sampling Points
2.3 Monitoring Method
2.4 Monitoring Period5
2.5 Monitoring Results6
CHAPTER 3: CONCLUSION AND RECOMMENDATIONS10
APPENDIX-1 FIELD SURVEY PHOTOSA1-1
APPENDIX-2 LABORATORY RESULTS
LIST OF TABLES
Table 2.1-1 Monitoring Items for Water Quality
Table 2.2-1 Outline of Sampling Points
Table 2.3-1 Analytic Method for Water Quality
Table 2.4-1 Sampling Time of Each Point5
Table 2.4-2 Tide Record for Yangon River, Myanmar5
Table 2.5-1 Results of Water Quality Monitoring at Discharged point and Discharged Creek7
Table 2.5-2 Results of Water Quality Monitoring at Reference Tube Well
LIST OF FIGURES
Figure 1.1.1 Location of Sampling Points of Water Quality Monitoring

CHAPTER 1: INTRODUCTION

1.1 General

Thilawa Special Economic Zone (SEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd. (MJTD) has a responsibility to carry out regular monitoring in the industrial area of Zone B in accordance with the approved Environmental Impact Assessment (EIA) report and Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area. As for the monitoring of the water quality, total four sampling points are set for water quality survey, named SW-2, SW-4, SW-7 and GW-2 have been monitored in Thilawa SEZ and its surrounding area in timely manner. Among the four locations, SW-7 is main discharged point of Zone B during the operation stage. Moreover, GW-2 is monitored as a reference of existing tube well which located in the monastery compound of Phalan village. Location of sampling points for water quality monitoring is shown in Figure 1.1-1.

Source: Google Earth

Figure 1.1-1 Location of Sampling Points of Water Quality Monitoring

CHAPTER 2: WATER QUALITY MONITORING

2.1 Monitoring Items

Sampling points and parameters for water quality monitoring are determined to cover the environmental monitoring plan of the EIA report.

Water quality sampling was carried out at four locations. Among the four locations, water flow measurement was carried out at two locations (SW-2 and SW-4) where can be measured by current meter. However, water flow measurement cannot be conducted with current meter at one location (SW-7) because water gate is closed. Monitoring items and sampling points are summarized in Table 2.1-1.

Table 2.1-1 Monitoring Items for Water Quality

No.	Parameters	SW-2	SW-4	SW-7	GW-2	Remarks
1	Water Temperature	0	0	0	0	On-site measurement
2	pH	0	0	0	0	On-site measurement
3.	DO	0	.0	0	0	On-site measurement
4	BOD(5)	- 6	0	G	0	Laboratory analysis
5	COD(Cr)	0	0	0	0	Laboratory analysis
6	Total Nitrogen	:Q7	0	G	0	Laboratory analysis
7	Suspended Solids	0	0	0	0	Laboratory analysis
8	Total Coliform	0	0	0	0	Laboratory analysis
9	Total Phosphorous	0	0	0	0	Laboratory analysis
10	Color	. 0	0	0	0	Laboratory analysis
11	Odor	0	0	0	0	Laboratory analysis
12	Zinc	0	0	0	0	Laboratory analysis
13	Arsenic	0	.0	0	Ö	Laboratory analysis
14	Chromium	0	0	0	0	Laboratory analysis
15	Cadmium	.0	(0)	.0	.00	Laboratory analysis
16	Selenium	0	.0	0	0	Laboratory analysis
17	Lead	0	.0	0	0	Laboratory analysis
18	Copper	0	0	0	Ö	Laboratory analysis
19	Barium	0	0	0	0	Laboratory analysis
20	Nickel	0	0	0	0	Laboratory analysis
21	Cyanide	100	0	0	o l	Laboratory analysis
22	Total Cyanide	0	0	0	0	Laboratory analysis
23	Free Chlorine	0	0	0	0.	Laboratory analysis
24	Sulphide	0	0	0	0	Laboratory analysis
25	Formaldehyde	0	0	0	0	Laboratory analysis
26	Phenols	0	0	0	0	Laboratory analysis
27	Total Residual Chlorine	0	0	0	. 0	Laboratory analysis
28	Chromium (Hexavalent)	. 0	0	0	0	Laboratory analysis
29	Ammonia	0	0	0	0	Laboratory analysis
30	Fluoride	0	0	0.	0	Laboratory analysis
31	Silver	0	0	0:	0	Laboratory analysis
32	Oil and Grease	0	0	(0)	9.	Laboratory analysis
33	Total Dissolved Solids	0	0	0	0	Laboratory analysis
34	Iron	0	0	0	0	Laboratory analysis
35	Mercury	0	0	٥	. 0	Laboratory analysis
36	Escherichia Coli	-	-	0	0	Laboratory analysis
37	Flow Rate	.0.	0	322	2	On-site measurement

Source Myanmar Koei International Ltd

2.2 Description of Sampling Points

The outline of sampling points is mentioned in Table 2.2-1. The photos of conducting field survey at each sampling points are mentioned in Appendix-1.

Table 2.2-1 Outline of Sampling Points

Ne.	Station	Detailed Information
	SW-2	Coordinate- N - 16° 40′ 20.69″, F 96° 17′ 18.04″ Location - Upstream of Shwe Pyauk Creek Survey Item - Surface water sampling and water flow rate measurement
2	SW-4	Coordinate: N - 16" 39" 42.84", E : 96" 16" 27.42" Location - Downstream of Shive Pyank Creek Survey Item - Surface water sampling and water flow rate measurement
3	SW-7	Coordinate - N - 16° 40' 13.25", E - 96° 17' 5.66" Lucation Outlet of retention pand of Zone B before connecting to Shwe Pyauk Crock Survey Item - Discharge water sampling
4	GW-2	Coordinate - N - 16° 39' 25.30", B - 96° 17' 15.60" Location - In the monastery compound of Phalan village Survey Item - Ground water sampling

Source: Myanitar Koai International Ltd.

SW-2 (Reference Point)

SW-2 was collected at the upstream of Shwe Pyauk creek. This sampling point is located in the northeast of Zone B area and at the south of Dagon-Philawa road. The surrounding areas are Zone A in the northwest and local industrial zone in the east respectively.

SW-4 (Reference Point)

SW-4 was collected at the downstream of Shwe Pyauk creek, after mixing of discharge water from local industrial zone, Thilawa SEZ Zone A and Zone B, which is flowing from east to west and then entering into the Yangon River. The distance is about 2.15 km downstream of SW-2. This sampling point is located in the west of Zone B area and in the south of Dagon-Thilawa road. The surrounding areas are Zone A in the northeast, local industrial zone in the east and paddy fields in the south and west respectively.

SW-7 (Discharged Point)

SW-7 is main discharged point of Zone B during operation stage. The distance is about 434 m downstream of SW-2. This sampling point is located at outlet of retention pond of Zone B, in the north of Zone B area and in the south of Dagon-Thilawa road. The surrounding areas are Zone A in the north and local industrial zone in the east respectively.

GW-2 (Reference of Existing Tube Well)

GW-2 was collected from tube well as ground water sample. It is located in the monastery compound of Phalan village. The surrounding areas are Thilawa SEZ Zone A in the north, Phalan village in the south and fields in the west and local industrial zone in the northeast and operation of Thilawa SEZ Zone B in the cast and northeast respectively.

2.3 Monitoring Method

All water samples were collected with cleaned sampling bottles and analyzed by the following standard method as shown in Table 2.3-1. All samples were kept in iced boxes keeping at 2-4 °C and were transported to the laboratory. Among the parameters; water temperature, pH and DO were measured by the on-site instrument "Horiba, U-52" and water flow rate was also conducted by using the on-site instrument "JFE Digital Current Meter".

Table 2.3-1 Analytic Method for Water Quality

No.	Parameter	Method
1	Water Temperature	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
2	pH	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
3	Suspended Solids (SS)	APHA 2540 D (Dry at 103-105°C Method)
4	Dissolved Oxygen (DO)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
5	BOD ₍₅₎	APHA 5210 B (5 Days BOD Test)
6	COD _(Cr)	APHA 5220D (Close Reflux Colorimetric Method)
7	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)
8	Total Nitrogen (T-N)	HACH Method 10072(TNT Persulfate Digestion Method)
9.	Total Phosphorous (T-P)	APHA 4500-P E (Ascorbic Acid Method)
10	Color	APHA 2120C (Spectrophotometric Method)
11	Odor	APHA 2150 B (Threshold Odor Test)
12	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)
13	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
14	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
15	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
16	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
17	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
18	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
19	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
20	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
21	Barium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
22	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
23	Cyanide	HACH 8027 (Pyridine-Pyrazalone Method)
24	Total Cyanide	Distillation process: APHA 4500-CN-C. Total Cyanide after Distillation, Determine cyanide Concentration Process: HACH 8027 (Pyridine – Pyrazalone Method)
25	Free Chlorine	APHA 4500-CL G (DPD Colorimetric Method)
26	Sulphide	HACH 8131 (USEPA Methylene Blue Method)
27	Formaldehyde	HACH 8110 (MBTH Method)
28	Phenois	USEPA Method 420.1 (Phenolics (Spectrophotometric, Manual 4-AAP With Distillation)
29	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
30	Total Dissolved Solids	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)
31	Total Residual Chlorine	APHA 4500-CL G (DPD Colorimetric Method)
32	Chromium (Hexavalent)	ISO 11083:1994 (Determination of chromium (VI) Spectrometric method using 1,5- diphenylcarbazide)
33	Ammonia	HACH Method 10205 (Silicylate TNT Plus Method)
34	Fluoride	APHA 4110 B (Ion Chromatography with Chemical Suppression of Eluent Conductivity)
35	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
36	Escherichia Coli	APHA 9221 F (Escherichia Coli Procedure Using Fluorogenic Substrate)
37	Flow Rate	Detection of Electromagnetic Elements (Real-time measurement by AEM 213-D Digital Current Meters)

Source: Myanmar Koei International Ltd.

2.4 Monitoring Period

Water quality and water flow rate monitoring were conducted on 7 June 2023, and sampling time is shown in Table 2.4-1 to avoid tidal effect. The tide record for Yangon River, Myanmar 7 June 2023 is shown in Table 2.4-2.

Table 2.4-1 Sampling Time of Each Point


No.	Station	Sworpling Time	12.17.17
1	SW-2	07/06/2023 08:51	(520)
2	SW-4	07/06/2023 09:12	
3	SW-7	07/06/2023 09:48	2000
4	GW-2	07/06/2023 08:22	213.000TR

Source Myanmar Koei International Ltd.

Table 2.4-2 Tide Record for Yangon River, Myanmar

Date	L time	Heighi (m)	Tide Conditions
3000 W. A	02:07	1.01	Low Tide
07/06/2023	06:27	5.37	High Tide
07/00/2023	13;46	1,23	Low Tide
	; 18:32	5.93	High Tide

Source: Myaumar Port Authority, Tide Table for the Yangon River and Elephant Point, 2023.

2.5 Monitoring Results

Results of water quality monitoring at discharged point, discharged creek are summarized in Table 2.5-1. Analytical results of the laboratory are described in Appendix-2. The results were compared with the target value of effluent water quality discharged to water body stipulated in the EIA report.

2.5.1 Results of Discharged Point and Discharged Creek

As the comparison with the target value, the results of suspended solid (SS), total coliform, iron and ammonia exceeded the target values.

Result of Discharged point

As for the result of total coliform of surface water, result at the main discharging point of Zone B (SW-7) before discharging to the creek, exceeded the target value due to the expected reason; the potential expected reason might be natural bacteria existed in all area of Zone B because the existing of various kinds of vegetation and animals, especially the excrement of the creature and death of freshwater fishes in and along the retention pond.

Since the composition of the total coliform include bacteria from natural origin, and total coliform do not affect human health directly, E. Coli analysis was carried out alternatively to identify the health impact by coliform bacteria. As for the result of E. Coli of surface water at the main discharging point of Zone B (SW-7), the result was under the reference value. Therefore, although the target value of total coliform was exceeded at the main discharging point of Zone B (SW-7) but it is considered that there is no significant impact on human health.

Result of Reference Monitoring points (Discharged Creek)

As for the result of SS, results at the surface water monitoring points (SW-2) and (SW-4) exceeded the target values. The exceeded results for SS maybe due to two expected reasons; i) delivered from upstream area such as natural origin and wastewater from local industrial zone which is located outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to backflow by tidal fluctuation along Shwe Pyauk creek.

As for the result of total coliform, results at surface water monitoring points (SW-2) and (SW-4) exceeded the target value due to three expected reasons: i) the existing of various kinds of vegetation and animals, especially the excrement of the creature and death of freshwater fishes in and along the discharged creek, ii) wastewater from the local industrial zone outside of Thilawa SEZ, and iii) delivered from surrounding area by tidal effect.

As for the result of iron, the result at the monitoring point of surface water monitoring point (SW-2) and (SW-4) exceeded the target value. The possible reason for exceeded values in surface water (SW-2) and (SW-4) maybe due to the influence of natural origin (iron can reach out from the soil by run-off). Surroundings of the Thilawa SEZ especially small hilly areas are mainly composed of iron rich soil (lateritic soil), and it can be transported to the low land area by run-off.

As for the result of ammonia, the result at the monitoring point of surface water monitoring point (SW-2) exceeded the target value. The possible reason for exceeded values in surface water (SW-2) may be due to the discharged wastewater from the local industrial zone, nitrogenous waste from animals, and runoff from agricultural land.

Table 2.5-1 Results of Water Quality Monitoring at Discharged point and Discharged Creek

No.	Parameters	Unit	SW-2	SW-4	SW-7	Target Value (Reference Value for Self- Monitoring)
1	Water Temperature	'C.	26	27	27	≤35
2	pH	-	7.4	7.0	7.5	69
3	Suspended Solid (SS)	mg/I	90	502	32	50
4	Dissolved Oxygen (DO)	mg/I	3.88	6.02	4.86	
.5	BOD(t)	mg/l	3.86	4.44	7,55	30
6	COD(Cr)	mg/l	24.3	5.0	15.0	125
7	Total Coliform	MPN/100ml	> 160000	> 160000	> 160000	400
8	Total Nitrogen (T-N)	mg/l	14.7	1.6	0.6	80
9	Total Phosphorous (T-P)	mg/l	0.65	0.72	0.09	2
10	Color	TCU (True Color Unit)	24.17	3,58	8.95	150
11	Odor	TON (Threshold Odor Number)	1	1	1	
12	Oil and Grease	mg/I	< 3.1	< 3.1	< 3.1	10
13.	Mercury	mg/I	≤ 0.002	≤ 0.002	≤ 0.002	0.005
14	Zinc	mg/l	≤ 0.002	0.026	0.11	2
15	Arsenic	mg/l	≤ 0.010	≤ 0.010	≤ 0.010	0.1
16	Chromium	mg/l	≤ 0.002	≤ 0.002	≤ 0.002	0.5
17	Cadmium	mg/l	≤ 0.002	≤ 0.002	≤ 0.002	0.03
18	Selenium	mg/l	≤ 0.010	≤ 0.010	≤0.010	0.02
19	Lead	mg/l	≤ 0.002	≤ 0.002	≤ 0.002	0.1
20	Copper	mg/l	≤ 0.002	≤ 0.002	≤ 0.002	0.5
21	Barium	mg/l	≤ 0.002	≤ 0.002	≤ 0.002	1
22	Nickel	mg/I	≤ 0.002	≤ 0.002	≤ 0.002	0.2
23	Cyanide	mg/l	< 0.002	< 0.002	< 0.002	0.1
24	Total Cyanide	mg/l	0.003	0.004	0.003	1
25	Free Chlorine	mg/l	< 0.1	< 0.1	< 0.1	1
26	Sulphide	mg/l	0.371	0.333	0.080	
27	Formaldehyde	mg/l	0.213	0.178	0.041	1
28	Phenols	mg/l	0.002	< 0.002	< 0.002	0.5
29	Iron	mg/l	8,346	22.626	1.882	3.5
30	Total Dissolved Solids	mg/l	224	266	90	2000
31	Total Residual Chlorine	mg/l	< 0.1	< 0.1	< 0.1	0.2
32	Chromium (Hexavalent)	mg/I	< 0.05	< 0.05	< 0.05	0.1
33	Ammonia	mg/l	14.00	0.71	0.15	10
34	Fluoride	mg/l	0.187	0.301	0.131	20
35	Silver	mg/l	≤ 0.002	≤ 0.002	≤ 0.002	0.5
36	Escherichia Coli	MPN/100m1	12	12	17.0	(1000)* (CFU/100ml)
37	Flow Rate	m ³ /s	0:06	0.91		

Note. Red color means exceeded value than target value.

Source: Myanmar Koei International Ltd.

^{*}Note: Based on the water utilization at discharged creek, the quality standard for water baths in Japan, (Ministry of Environment, 1997) is set as a reference value for self-monitoring of E. coli for surface water monitoring. However, due to limitation of capacity for analytical laboratory in Myanmar, the method to analyze the "Colony Forming Unit (CFU)" is not available in Myanmar. Therefore, the results of "Most Probable Number (MPN)" are assumed similar to CFU values and compared with reference values. Once the method to analyze the CFU will be available in Myanmar, the analytical method will be changed.

2.5.2 Result of Reference Tube Well

Result of water quality monitoring at reference tube well monitoring point is shown in Table 2.5-2. As the comparison with the target value, the result of total coliform and iron exceeded the target value.

As for the result of total coliform in ground water, results at (GW-2) exceeded the target value. It may be possible due to the poor maintenance of well which can increase the risk of bacteria and other harmful organisms. However, the result of E. Coli of (GW-2) was under the reference value. Therefore, although the target value of total coliform exceeded at monitoring point of (GW-2), it is considered that there is no significant impact on human health.

As for the result of the iron, the result at the monitoring point of reference tube well (GW-2) exceeded the target value. Comparison with previous monitoring results of reference tube well (GW-2), the iron concentration results ranged from 3.076 mg/l (August 2019) to 9.182 mg/l (August 2022) and most of the iron concentration measured results (from April 2019 to June 2023) exceeded the target value except the iron concentration result of August 2019, April 2022 and April 2023. Therefore, the possible reasons may due to the influence of natural origin (iron can reach out from soil by run-off). Surroundings of the Thilawa SEZ especially small hilly areas are mainly composed of iron rich soil (lateritic soil), and it can be transported to the low land area by run-off.

Table 2.5-2 Results of Water Quality Monitoring at Reference Tube Well

No.	Parameters	Unit	GW-2	Target Value (Reference Value for Self-Monitoring)
1	Water Temperature	'C	28	≤35
2	pH	-	6.4	6-9
3	Suspended Solid (SS)	mg/l	14	50
4	Dissolved Oxygen (DO)	mg/l	6.63	
5	BOD(5)	mg/l	7.88	30
6	COD(Ci)	mg/l	20.0	125
7	Total Coliform	MPN/100ml	1600.0	400
8	Total Nitrogen (T-N)	mg/l	< 0.5	80
9	Total Phosphorous (T-P)	mg/l	0.60	2
10	Color	TCU (True Color Unit)	14.55	150
11	Odor	TON (Threshold Odor Number)	1.	
12	Oil and Grease	mg/l	< 3.1	10
13	Mercury	mg/l	≤ 0.002	0.005
14	Zinc	mg/I	≤ 0.002	2
15	Arsenic	mg/I	≤ 0.010	0.1
16	Chromium	mg/l	≤ 0.002	0.5
17	Cadmium	mg/l	≤ 0.002	0.03
18	Selenium	mg/l	≤ 0.010	0.02
19	Lead	mg/l	≤ 0.002	0.1
20	Copper	mg/l	≤ 0.002	0.5
21	Barium	mg/l	≤ 0.002	1
22	Nickel	mg/l	≤ 0.002	0.2
23	Cyanide	mg/l	< 0.002	0.1
24	Total Cyanide	mg/l	< 0.002	1
25	Free Chlorine	mg/I	< 0.1	1
26	Sulphide	mg/l	0.029	1
27	Formaldehyde	mg/l	0.004	1
28	Phenols	mg/l	0.007	0:5
29	Iron	mg/l	6.714	3.5
30	Total Dissolved Solids	mg/l	178	2000
31	Total Residual Chlorine	mg/l	< 0.1	0.2
32	Chromium (Hexavalent)	mg/l	< 0.05	0.1
33	Ammonia	mg/l	0.02	10
34	Fluoride	mg/l =	0.514	20

Νo.	Paramieters	Çair	CW2	Target Valus (Referènce Value for Sell-Mostoring)
35	Silver	mg/l	< 0.002	0.5
36	Escherichia Coli	MPN/100ml	22.0	(100)* (MPN/100ml)
37	Plow Rate	m ³ /s	2 2	

Note: Red color meens exceeded value than target value.

Source: Myanmar Knei International Ltd.

2.5.3 Comparison of Results of Water Quality Exceed the Target Value between Previous Monitoring and June 2023 Monitoring

In order to overview the exceed the target values of the concerned parameters during the present monitoring (June 2023), the results of the exceed parameters with respective sampling points are compared with the previous monitoring results since June 2022.

Regarding the results of the parameter of discharge point, total coliform amount at SW-7 is higher than the target value in June 2022. August 2022, February 2023 and June 2023. The concentrations of coliform at SW-7 are extending from 2300 MPN/100ml to the detection limit (>160000 MPN/100ml). Total coliform concentration at SW-7 is obviously reached to the detection limit in the early and midralny season and it might be the effect of storm water run-off. Moreover, iron concentration at GW-2 is always higher than the target value except the result of April 2023. It is observed that iron concentration at GW-2 is higher throughout monsoon and winter time. As for the total coliform results at GW-2, the values are higher than the target value only in April and June 2023.

On the other hand, it is observed that some parameters at the reference monitoring points (SW-2 and SW-4) are also higher than the target value. As for the result of ammonia at SW-2, it is higher than the target value in this monitoring survey (June 2023), but the results are lower than the target value in previous surveys. Although the results of iron at SW-2 is higher than the target value only in August 2022 and June 2023, iron at SW-4 is higher in five monitoring surveys (June, August, October, December 2022 and June 2023) ranging from 3.618 to 22.626 mg/l. It is revealed that high concentration of iron at SW-4 occurred throughout rainy season till the beginning of winter time. Regarding the SS concentration, the results of SW-2 is higher in June, August, December 2022 and June 2023, ranging from 88 to 370 mg/l. Distinctly, except the result of April 2023, SS concentration at SW-4 is higher than the target value in the remaining surveys, ranging from 78 to 558 mg/l. It is clear that SS concentration at SW-2 and SW-4 are higher during rainy season due to the storm water run-off from the surrounding. It is obvious that total coliform at SW-2 is higher in six monitoring surveys among seven (ranging from 1300 to >160000 MPN/100ml) while the results at SW-4 is higher in all monitoring surveys (ranging from 4600 to >160000 MPN/100ml). Especially the total coliform amount at SW-4 was reached to the detection first (>) 60000 MPN/100ml) in June, August. October 2022 and June 2023 respectively. It is possible to say that the present condition of the water quality reflects the background condition of the surrounding environment of Thilawa SEZ.

The expected reasons for the results exceed the target value of concerned parameters are discussed in the upper section of this monitoring report.

Note: Based on the water utilization at monitoring point for ground water, BJ(Irrigation water) of National Technical Regulation on Surface Water Quality in Victiam (No. QCVN 08, 2008/B1NM1) is set as a reference value of self-monitoring for ground water monitoring.

CHAPTER 3: CONCLUSION AND RECOMMENDATIONS

As described in Chapter 2 (Section 2.5), the results of suspended solid (SS) and iron at (SW-2 and SW-4), total coliform at (SW-2, SW-4 and SW-7) and ammonia at (SW-2) in surface water, and the results of total coliform and iron at (GW-2) in ground water exceeded the target value in this monitoring period for operation stage of Thilawa SEZ Zone B.

As for the result of total coliform of surface water, result at the main discharging point of Zone B (SW-7) before discharging to the creek, exceeded the target value due to the expected reason; the potential expected reason might be natural bacteria existed in all area of Zone B because there are various kinds of vegetation and creature such as birds, and small animals in and along the retention pond.

Since the composition of the total coliform include bacteria from natural origin, and total coliform do not affect human health directly, self-monitoring for E. Coli analysis was carried out to identify health impact by coliform bacteria. As for the result of E. Coli of surface water at the main discharging point of Zone B (SW-7), the result was under the reference value. Therefore, although the target value of total coliform was exceeded at the main discharging point of Zone B (SW-7) but it is considered that there is no significant impact on human health.

As for the result of SS, total coliform and iron at reference monitoring point (SW-2 and SW-4) exceeded the target values. The exceeded results for SS at (SW-2 and SW-4) maybe due to two expected reasons; i) delivered from upstream area such as natural origin and wastewater from local industrial zone which is located outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to backflow by tidal fluctuation along Shwe Pyauk creek. The expected reasons for exceeding the target values of total coliform at (SW-2 and SW-4) are natural origin (natural bacteria existed). The expected reason for exceeding the target value of iron at reference monitoring point (SW-2 and SW-4) may be due to the influence of natural origin (iron can reach out from soil by run-off), the surrounding high land areas is comprised of lateritic soils and it can be transported to the low land area by run-off.

As for the result of ammonia, the result at the monitoring point of surface water monitoring point (SW-2) exceeded the target value. The possible reason for exceeded values in surface water (SW-2) maybe due to the discharged wastewater from the local industrial zone, nitrogenous waste from animals, and runoff from agricultural land.

As for the result of the total coliform, the result at the monitoring point of reference tube well (GW-2) exceeded the target value. It may be possible due to the poor maintenance of well which can increase the risk of bacteria and other harmful organisms. However, the result of E. Coli of (GW-2) was under the reference value. Therefore, although the target value of total coliform was exceeded at monitoring point of (GW-2), it is considered that there is no significant impact on human health.

As for the result of the iron, the result at the monitoring point of reference tube well (GW-2) exceeded the target value. Comparison with previous monitoring results of reference tube well (GW-2), the iron concentration results ranged from 3.076 mg/l (August 2019) to 9.182 mg/l (August 2022) and most of the iron concentration measured results (from April 2019 to June 2023) exceeded the target value except the iron concentration result of August 2019, April 2022 and April 2023. Therefore, the possible reasons may due to the influence of natural origin (iron can reach out from soil by run-off). Surroundings of the Thilawa SEZ especially small hilly areas are mainly composed of iron rich soil (lateritic soil), and it can be transported to the low land area by run-off

As for future subject for main discharged points of Thilawa SEZ Zone B, the following action may be taken to maintain the target value of total coliform and appropriate water quality monitoring:

- To continue monitoring Escherichia coli (E. coli) level to identify health impact by coliform bacteria.

TANADI VELO

APPENDIX-1 FIELD SURVEY PHOTOS

FOR DISCHARGED POINT OF THILAWA SEZ ZONE B

Surface water sampling and onsite measurement at SW-7

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGED POINTS AND BASELINE OF DISCHARGED CREEK

Surface water sampling and onsite measurement at SW-2

Surface water sampling and onsite measurement at SW-4

Ground water sampling and onsite measurement at GW-2

APPENDIX-2 LABORATORY RESULTS

FOR DISCHARGED POINT

DOWN

Report No. ISSN: LAM 202108077

Revision No. 1 Report Data 10 Jone, 2023 Application to 00111-0001

Analysis Report

Chert flame

Myanmicr Kool Internacional (TD (MKJ)

No. 36/A, 1st Floor, Srand Pto Sen Goldomos. Environment Handaring report for Zone 8 & 5 ours, Pho Sein Root, Tamer Township, Yangon, Myanmar

Project Name Sample Description

Sampling Date 1, 7 June, 2023

HKI SW 7-0507 W 2306058 Sample No. Sample No. Waste Profile No. Sampling By Customer Sample Receives Date 7 June, 2023 Analytics Date 7 30/08/7073

No.	Parameter	Method	Unit	Result	rod
1	55	APHA 25400 (Dry at 103 101°C Hathor)	mg/l	32	
2	500 (5)	APHA SZEC R (S Days BOD Text)	mg/.	2.66	0.00
1	COD (Cr)	APHA 5220D (Close Refue Calcrimetric Refloot)	mg/i	15.0	0.7
4	Total Celvium	APHA 92218 (Standard Total Culturn Fernerbatun Fechnique)	MPN/100mi	>160000	1.8
5	D1 and Grease	APHA 55208 (Partition-Gravenatine Method)	ing/I	43:1	3.1
n	Color	APHA-2170C (Spectraphosometra; Method)	TON	8.95	11.00
2	Talal Nicropei	HACH Hitmod 15072 (TNT Persuifate Digestion Hernold)	mg/l	5.6	0.5
2	Tatal Phesphorous	APIA 4500-P C (Ascorbic Acid Method)	mg/l	0.09	0.05
18	Ainmonta	HACH Method 1005 (Silvoyate TN1 Plus Method)	mgit	0.15	19.02
9	TDS	APHA 2540 C (Total Dissafved Solids Oried at 180 C Herbird)	mg/l	90	-
10	Cidle	APHA 2150 h (Titreshold Odor Test)	TOW	1	0
11	Hensury	APHA 3120 6 (Inductively Coupled Purms (ICF) Nethod)	mg/l	±0.002	0.002
12	2ec	APHA 3120 It (Inductively Coupled Plesma (ICP) Hethod)	ru/l	0.11	8.002
1.1	Arsenic	APHA 3120 ft (Inductivete Couples) Plasma (ICP) Hestrad)	mg/l	40.010	0.00
4	Dvermon	APHA 3129 B (Inductively Coupred Plasma (ICP) Nethod)	ngn	+0.002	0.002
1	Cacroum	APHA 3120 B (Industryely Coupled Planta (ICP) Method)	man	+0.002	0.602
16	Selection	APIA 3126 ff (Inductively Coupled Plasma (ICP) Nethod)	right	≤0.010	0.010
1	Lead	APHA 3126 R (Industriety Couples Plasma (ICF) Hathat)	rig/l	40.002	8.002
18	Copper	APNA 3120 5 (Inductively Coupled Plasma (ICF) Method)	rig/l	40.000	0.002
19	Samum	APNA 2120 B (Inquitively Couples Planny (ICP) Method)	mg/I	98.007	0.007
20	Notice	APHA 3126 B (Inductively Coupled Plasma (ICP) Method)	mail	60.002	9.802
PT.	Sher	APHA 3130 B (BBUdhvery Coupled Planna (IIIP) Method	mg/l	40.005	0.002
22	3rem	APHA 3130 B (Industriely Coupled Plasma (ICP) Mir(hoo)	mgrs 1	1.887	0.007
13	Cyanade	HACH BIZZ EPyridine. Pyraculane Hethod:	mgir	+0.003	0.003
24	Tirtal Cyanide	Decreased Process Africa 4500 CA; It Total Calendar After Decreased, Decreased Calendar Calendar Process (Nation 4537) Personal Parasitation Process (Nation 4537) Personal Parasitation Process (Nation 4537)	mg/)	0.001	0.001
75	never en Chronium (Cris)	150 (1585 1984 (Decembration of three artist) Specimentin method upon 1.9	(197)	<0.03	0.05
12	Fumile	APPA-4116 S (Set Chromatography with Elventral Suppressor of Elvent Contictions)	mail	0.131	0.014
25	Yeer Chlorine	AINIA 4500 CL IL (DPD Colomietric Method)	rhg/1	10.1	0.1
29	Total Residual Chicone	APNA 4505 CL G (195) Colominator Mathod)	mg/i	*0.5	0.1
in	Suighide	HACH 8131 (USERA Methylana St.a Methyd)	mgli	D.Dett	U 065
n	Formalismedic	HACH ALSO (MRTH MATHOC)	mg/i	(0.04)	0.003
12	Eartenetra Con	A89-6 9221 F. Escherichia Cali Procedure Stury Plusingerior Substrate	word toom!	17.6	1.6
n	Poetura	(SER Remoit 426.) (These is Disector filtration in Plant 4AV with Out usual)	mg/l	< 0.002	0.002

APMA: American Public residth Association (APMA), the American Water World Association (AWMA), and the Water Engineers Federature (WCF), Standard Methods for the Examination of Water and Waterwater (2014 author).

Altha-2122m 5(b), Color Unit - CO(True Coor Unit: One TG3 is equivalent to one Hazer unit and to one Pt-Co unit.

Charry My in: Tham Assistant Manager

Approved the

July June so page

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGED POINTS AND BASELINE OF DISCHARGED CREEK

DOWA

CONTRACTOR OF THE PROPERTY OF

100

Report No. : GPM-(AB-202306069 Revision No. : 1

Report Date : 28 June, 2023 Application No. : 0001-C001

Analysis Report

Chert Name | Myanmar Kon International LTO (Mr

No. 36/A. 1st Floor, Erland Phio Sein Condominium, Phic Sein Road, Tamwe Township, Yangsin, Hyanmar.

Project Name Engineers Monitoring report for Zone A & 9

Sample Description

No.

Waste Profile No.

Parameter

Sample Name Mk I SW 2-0607 Sample No. W 2306055

W 2-0607 Sampling Date | 7 fune, 2023 6055 Sampling By | Customer Sample Received Date | 7 June, 2023

Method

Analytical flate | 7-28/06/2023

Unit

1 55 APPIA 2540D (Dry at 103-105)C Method mg/i 800 (5) APNA 5210 E (5 Days 800 Test) 1.06 0.00 APNA 52200 (Clase Reflux Colorimetric Method) 24.3 0.7 3 000 (0) mg/li a Total Children APHA 92218 (Skandard Total Coliform Fermentation Technique) HPN/100et ►160000 1.8 5 Dr and Crease AFNA 2120C (Sowcraphotometric Mathod) 34,17 0.00 TOI 7 Total Nitrogen NACH Hethod 10072 (TNT Persulfate Digestion Method) 14.7 0.5 # Total Phospherous APHA 4500-P E (Ascorbic Acad Method) 0.09 ngt 9. Ammonia HACH Method 10205 (Spryight TNT Plus Method) mg/i 14.00 0.02 10 105 APHA 2540 C (Total Dissolved Solids Sried at 180°C Method) 224 (rigit APHA 2150 B (Threshold Odor Test) II Odo TON 17 Hercary +0:002 APHA 3:20 B (Leductively Coupled Husma (ICP) Nethod) mart 0.063 13 Zinc 50.002 APHA 3120 B (Inductively Coupled Plasma (ICP) Method) mg/l ARKA 3170 ft (Exdustively Coupled Planna (TCP) Nishod) \$0.010 14 Arsenic ngil 0.010 15 Chrumus APHA 3126 B (Inductively Coupled Plasma (ICF) Method) 50.002 0.002 16 Cadmium APHA 3120 B (Indumively Coupled Hirsma (ICF) Method) mg/l KE 002 0.007 SE 010 17 Selemun APNA 3120 B (Industriely Coupled Plasmy (ICP) Method) mg/i 0.01 IN LEASE APHA 3120 B (Industriety Coupled Plasma (3CP) Method; +0.007 0.003 APHA 3126 & (Industriely Couples Plasma (ICP) Method: ep.002 0.000 19 Coppe righ 20 Berium AFRIA 3120 B (Inductively Coupled Planma (ICP) Hethod) ng/i 10.002 0.002 10.002 21 Nickel APRA 1120 B (Inductively Coupled Plauma (ICP) Hethod: rig/i 0.002 10,002 0.002 APRA 3120 B (Inductively Coupled Plasma (ICP) Method 22 Silver right. 23 Iron APHA 3120 B (Inductively Coupled Plasma (ICP) Method) 8 746 0.002 IIACH 8027 (Pyndine -Pyrazaione Method) -n.007 24 Cyande mg/l | System | Security | 8.003 0.002 Mens ≠0.05 0.05 ing/i 28 Free Chlorine APNA 4500 CL G (DPD Colonimative Method) < 0.1. 0.1 APIIA 4500 Ct. G (DPD Colorimetric Method) <0.1 11.1 29 Total Residual Chionne тал

Seman

10 Sutonide

22 Phenom

31 Formaldenyde

LCQ - Limit of Quartitation

HACH BITC [HSTH Method]

HACH 8131 (USEPA Methylene Blue Method)

APHA: American Public Hearth Association (APHA), the American Water Works Association (AWWA), and the Water Environment Tederation (WEF). Standard Rethods for the Examination of Water and Waterwater, 22nd edition

APINA 71200 A(n): Color Unit - TCUsTrue Color Unit; One TCU is equivalent to one Hazen unit and to one Pt-Co unit.

25274 Nechadi 476.1 (Prienatos chaestraphopyreins, Menuo 4447 Wan Dastellun))

Analysed the

Cherry Mysit Then

LAB GEM Approved by

mg/l

mg/

Hosti yoru 50 , KORS

0.371

0.211

0.005

0:000

THE RESERVE OF THE PROPERTY OF THE SAME SERVED OF T

DOWN

Report No. - USH-LAS-202309070

Revision No. 1 1 Report Date | 30 June, 2023 Approaches No. - 0001-0001

Analysis Report

Clerk Name:

Antrest Project Name

hs. H/A cut flow. Grand the Sein Conditionalin. Plus Sein Rocal, Taimer Toendap, Yanger, Myanniar Environment Hundrong report for Corie A & θ

Sample Description Sample Marine Sample No Waste Profile No

W-2306056

Seministrate : 7 June, 2023 Sampling by Customer Sample Received Data 7 June, 2023 Analytical Satur 2 - 6008/2013

No.	Parameter	Hethod	Unit	Result	1.00
1	\$5	APRIA Z540D (Dry at 103 (G1°C Highlot)	ingit	302	
2	800 (5)	ATHA 5210 B (S Days BOD Teys)	mg/l	0.85	0.00
,	C00 (O1)	APHA 57700 (Crose Reflux Coronnestric Heshint)	mg/l	5.0	9.2
4	Tutai Contorm	AIRIA 92218 (Standard Total Cristorm Fermendation Technique)	HPACI00HI	>160000	3.6
5	Oil and Grease	APHA SS208 (Percount Greymetric method)	mg/t	<3.1	3.1
4	CHIM	AHIA 2130C (Spectragrounners) Herhod)	102	3.58	0.00
7	total Hitrogeni	HACH Method 10077 (TWT Persutter Digestion Method)	mgri	1.4	0.5
	Total Phosphorous	APHA 4500-P E (Askordik Acid Perbod)	mgn	0.72	0.05
9	Ammonia	-WCH Method 10205 (Streylets TNT Plus Method)	man	0.71	0.01
10	105	APHA 2540 C (Total Disselved Solids Dried at 180 C Method)	reigh.	266	
11	Owier	APHA 2150 ft (Threshold Goor Test)	TON	1	. 0
12	Mercury	APHA 3120 B (Industryely Coupled Plasma (ICP) Method)	mg/t	\$0.002	0.00
i)	žini:	APVIA 3120 B (Inductively Couplet Planta (IEP) Method)	mgri	0:026	0.003
14	Arsmit.	APHA 3120 B (Shibultivery Cauped Plannia (SCP) Nemon)	mg/i	40.010	0.010
15	Оптинцип	APHA 3136 B (Diductively Coupled Plasma (ICP) Method)	mgit	40.002	0.063
16	Саптил	APHA 3120 S (Industrieny Coupled Planess (ICP) Method)	rhg/l	40,002	0.00
1.7	Seimum	APHA 3120 8 (Inductively Coupled Plasma (ICF) Method)	mg/I	×0.010	0.010
18	Lead	APHA 3120 B (Industryely Cooplet Plasma (3CP); Mathod)	mgm	10.002	0.00
19	Copper	ADNA 3136 th (Inductively Coupled Plauma (ICP) Method)	mg/t	< 0.005	0.00
70	Banum	AFNA 112E S Clinduithwey Coupers Hestine (ICP) Method)	mg/f	10.007	0.00
ži.	tricket	APHA 2120 B (Industriety Coupled Pirone (ICP) Method)	right	+0.003	0.50
24	Sher	ARNA 1120 II (Inductively Coupled Planna (ICP) Method)	mg/t	10.002	0.00
23	1 row	APHA 3320 th (Industrively Coupled Hasma (ICF) Hethod	mg/l	22.826	0.50
24	CASOTIN	HACH 8827 (Pyridite: Pyrazakine Method)	Nami	+3.002	0.00
75	Time Cyanide	Distribution Process: APMA RESIDENCE: L. Total Cyanics (For Description). Description Cyanide Careant a Con Process: IACH 8027 (Panis) in Parasistes Method.	71977	0.00+	0.00
25	Personal Chromise (Cid-)	(SD 1:000, 1994 (Deignan stunial stromartiVI) Spectromore, method song 1,5- ayterint moretei.	mart	<0.05	0.01
27	Flugisde	APAIX 4110 B (Sun Chromatography with Chemical Suppressure of Eluret Conductivity	matt	0.301	6.05
79	Free-Chiprese	APYIA 4500 CL G (DPD Cultor metric Premoti)	mgri	19.1	0.1
29	Tietal Recidue Chlonde	APHA 4500 EL G (DPO Communic Method)	mgt	+0.1	0.1
10	Subtice	HACH BLST (USERA Methylene Blue Methyld)	mgri	0.333	0.00
31	Formaldehyde	HACH #110 (MITH Wethor)	matt	0.176	0.00
32	Phignics	USDIA Nettod 426 II (Mercins) (Spectropholometric, Marcar AKAR With Distillation))	mail	×0.002	0.00

LOQ: Umit of Quantitat im

APHA American Public Hearth Association (APHA), the American Water Works Associatios (AWWA), and the World In-American Water who Wagnesians, 22nd exhibit the Examination of Water and Wagnesians, 22nd exhibit.

APPLA (1209-103). Color und - 1000 rue Color um), One 100 is equivalent to one haven und and to one Pt. Church

Analysez By

Cherry Paint There-Associate Handokt

man and home son, Europe management beforeign

DOWN

Report No. | GEN-LAB-302306075

Revision Res. | 1 Weport Clate | 30 June: 2023 Approximen No. 1 0001-0001

Analysis Report

Chent Name Chert Name
Address
Project Name
Sample Description
Sample Name
Sample No.
Waste Profile No. Hyanmar Kosi International LTD (HKI)

No. 36/A. 1st Floor, Grand Phy Sein Condomini Environment Mankoring report for Zene A & B um, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

MKI-GW-2-0607 W-2305059

Sampling Date | 7 June, 2023

123

Sampling By	Customer
Sample Received Date	7 June, 20
Analytical Date	3-30/06/29

No.	Parameter	Hathod	Unit	Result	rod
1	55	APHA 2540D (Dry at 103-105°C Method)	mg/l	14	
2	800 (S)	APHA 5210 B (5 Days 808 Test)	mg/I	7.88	0.00
2	C00 (C/)	APHA 52200 (Clase Reflux Colormetric Method)	mg/l	50.0	6.7
4	Yotal Colforn	APIIA 92218 (Standard Total Cultorm Fermentation Technique)	HPN/100ml	1600.0	1.6
5	tis and Greate	APHA 53208 (Partition-Grav/metric Method)	men	×0.1	1.1
ñ	Celer	APIA 2128C [Spectrophotometric Method]	1011	14.55	0.00
y	Total Nicrogen	HACH Method 10072 (TNI Persurate Departion Method)	rog/i	<6.5	0.5
0	Total Phospherous	APHA 4500-7 E (Ascorbic Acid Method)	mg/l	0.60	0.05
9	Ammonie	HACH Method 10205 (Sircylate TNT Plus Method)	Hgm	0.03	9.62
10	TOS	APHA 2540 C (Total Dissolved Solids tivled at 180°C Method)	mgit	178	
11	Ditter	APHA 2150 B (Threshold Odax Test)	TON	- 1	9
12	Mersury	APHA 3120 E (Inductively Coupled Pasma (ICP) Method)	ingit	\$00.002	0.000
13	2inc	APHA 3120 B (Inductively Coupled Plasme (ICP) Method)	reg/i	±0.00Z	0.00
14	Arsenic	APNA 3120 5 (Indumvely Coupled Plasma (SCP) Netholf)	ngil	±0.010	0.01
15	Chranium.	APISA 3120 B (Inductively Coupled Plasma (ICP) Method)	reg/c	10.002	0.00
16	Сволянт	APIA 3120.5 (Industriesy Coupled Planna (ICP) Method)	img/I	#0.002	0.00
17	Selenum	APHA 3126 & (Industriely Couples Plasma (3CP) Method)	regin	58.010	0.01
1ē	Leaf	APHA 3120 B (Inductively Couplet Plasma (ICP) Method)	reig/t	≤0.002	0.00
15	Cripper	APHA 3120 Billinouctively Coupled Rosma (ICP) Method)	mg/i	±0.007	0.00
20	Banum	APHA \$120 ti (Inductively Coupled Masma (IOF) Method)	mg/I	±6.003	0.00
21	(Niche)	APHA 3120 B (Industriesy Counted Plasma (TOP) Method)	mg/l	±0.002	0.00
22	Silver	APHA 3120 b (Inductively Coupled Plasma (ICP) Method)	mg/l	s 0.002	0.00
23	brist	ARIA 3170 B (Industriely Coupled Plasma (ICP) Hathod)	Parn	6.714	0.00
24	Cyanide	HACH 8027 (Pyridine - Pyracelone Hethod)	mg/r	< 0.002	0.00
25	Total Cyanide	Ontificial Process APVA 4550-Chr. C. Telal Cyanole after Distriction, Detailment Cyanole Concentration Process: HACH 8027 (Pyropine -Pyresalone Hethod)	mg/l	< 0.002	0.00
26	Hexavalent Oversum (Cr6+)	ISO 23083 1994 (Determination of thromium(VI) Spectrometric method using 1.5- d phonological (e.g.)	mañ	<0.85	0.05
27	Fluoride	BPHA 4110 B (Jon Chromatography with Chemical Suppressions of Fluent Cottouchrity)	mg/l	0.514	0.01
26	Free Chlorine	APHA 4500 Ct, G (DPD Colonmetric Method)	mg/t	e0:1	0.1
29	Total Residual Untorine	APHA 4500 CL G (DPD Columeum, Memori)	mg/l	< 0.1	0.1
30	Sugnide	HACH BLSL (USENA Methylene Ruir Method)	mun	0.079	0.00
31	Furmaldehyde	HACH 8110 (MBTH Nemod)	ms/1	0.004	0.00
12	Eschenichia Coli	AFITA \$221 F Escherichia Coli Procedure Using Fluorogenic Substrate	MPN/100mi	22.0	1.8
33	Pheroid	USERA Mechall 420.1 (Prension (Spectraphycometric, Manual 4AAP With Districtor))	mg/l	0.007	10:00

APIKA - American Public Health Association (APIKA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Experiment on of Water and Wastewider, 22nd addition

APHA 21208.5(b); Color that - TCU(True Color Unit). One TCU is equivalent to one Hazni unit and to one Pt Co unit.

Assistant Manager

June soypoes

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3 (Operation phase)

Appendix-D


Air Quality Monitoring Report June 2023

AIR QUALITY MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA THILAWA SEZ ZONE B (PHASE 1, 2 & 3 OPERATION STAGE)

(BI-ANNUALLY MONITORING)

June 2023 Myanmar Koei International Ltd.

TABLE OF CONTENTS

CHAPT	TER 1: OUTLINES AND SUMMARY OF MONITORING PLAN	1
1.1	General	1
1.2	Outlines of Monitoring Plan	1
CHAPT	TER 2: AIR OUALITY MONITORING	2
2.1	Monitoring Item	2
2.2	Monitoring Location	2
2.3	Monitoring Period	2
2.4	Monitoring Method	3
2.5	Monitoring Results	3
CHAP7	TER 3: CONCLUSION AND RECOMMENDATION	5
APPEN	NDIX-1 HOURLY AIR RESULTS	A1-1
APPEN	NDIX-2 CERTIFICATE OF CALIBRATION	
	LIST OF TABLES	
Table 1	1.2-1 Outlines of Air Quality Monitoring Plan	1
Table 2	2.5-1 Air Quality Monitoring Result (Daily Average)	3
	LIST OF FIGURES	
Figure (2.2-1 Location of Air Quality Monitoring Point	2
	2.4-1 Status of Air Quality Monitoring Point	
	2.5-1 Frequency of Wind Direction at AQ-1	

CHAPTER 1: OUTLINES AND SUMMARY OF MONITORING PLAN

1.1 General

Thilawa Special Economic Zone (TSEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd. (MJTD) has a responsibility to carry out regular environmental monitoring in the industrial area of Zone B in accordance with the approved Environmental Impact Assessment (FIA) report with Environmental Management Plan (EMP), MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area.

1.2 Outlines of Monitoring Plan

To assess the environmental condition under the operation of industrial area in and around Thilawa SEZ Zone B, air quality had been monitored from 5 June 2023 to 12 June 2023 as follows;

Table 1.2-1 Outlines of Air Quality Monitoring Plan

Moultoring Date	Monitoring Inen	Pacameters	Number of Poinc	Doration	Manuszing Methodológy
From 5 June to 12 June, 2023	Air Quality	CO, NOa, PM2 s PM10 and SO2]	7 Days	On site measurement by Haz-Scanner Environmental Perimeter Air Station (EPAS)

Source: Myaninar Koci International Ltd.

:

CHAPTER 2: AIR QUALITY MONITORING

2.1 Monitoring Item

The parameters for air quality monitoring were CO, NO2, PM2.5, PM10 and SO2.

2.2 Monitoring Location

The air quality measurement equipment, "Haz-Scanner Environmental Perimeter Air Station (EPAS) was set up at the south of the Thilawa SEZ Zone B, N: 16°39'24.20", E: 96°17'15.80", inside the monastery compound of Phalan village. As the monitoring point (AQ-1) is adjacent to the southern boundary of Thilawa SEZ Zone B, it is surrounded by Thilawa SEZ Zone B in the north and east. In the south and west of AQ-1, the residential houses of Phalan village and the fields are occurred respectively. Besides, Thilawa SEZ Zone A is distanced about 2 km north of AQ-1 as well as the Thilawa Industrial Zone is about 1 km northeast. Due to the air quality monitoring is carried out at above location which is closed to the residential houses of Phalan village, the possible emission sources are exhaust gas and dust emissions from the fuel-burning equipment and other tasks of construction activities of Zone B but also from the daily human activities in Phalan village. The location of air quality monitoring is shown in the Figure 2.2-1.

Figure 2.2-1 Location of Air Quality Monitoring Point

2.3 Monitoring Period

Air quality monitoring was conducted seven consecutive days from 5 June, 2023 to 12 June, 2023.

2.4 Monitoring Method

Monitoring of CO, NO₂, PM_{2.5}, PM₁₀ and SO₂ were conducted by referring to the recommendation of the United States Environmental Protection Agency (U.S. EPA). The Haz-Scanner EPAS was used to collect ambient air pollutants. The EPAS measures automatically every one minute and directly reads and records onsite for CO, NO₂, PM_{2.5}, PM₁₀ and SO₂. The status of air quality monitoring is shown in Figure 2.4-1.

Source: Myanmar Koei International Ltd.

Figure 2.4-1 Status of Air Quality Monitoring Point

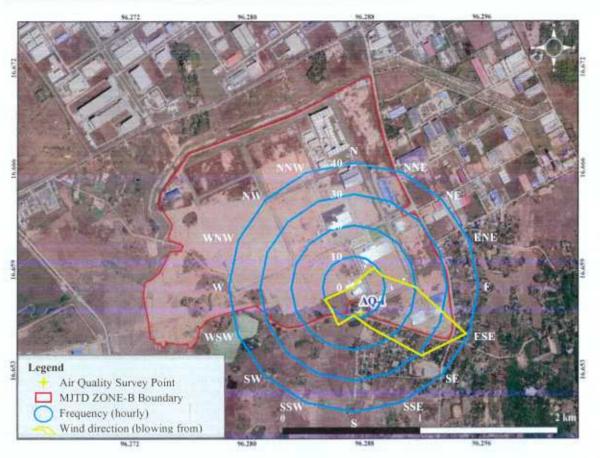
2.5 Monitoring Results

The daily average value of air quality monitoring results of CO, NO₂, PM_{2.5}, PM₁₀ and SO₂ are described in Table 2.5-1. Comparing with the target value of CO, NO₂, PM_{2.5}, PM₁₀ and SO₂ prescribed in EIA report for Thilawa SEZ development project Zone B, seven days average concentration of CO, NO₂ PM_{2.5}, PM₁₀ and SO₂ were lower than the target value.

Table 2.5-1 Air Quality Monitoring Result (Daily Average)

	CO	NO ₂	PM2.5	PM ₁₀	SO ₂	
Date	mg/m³	mg/m ³	mg/m³	mg/m³	mg/m ³	
05~06 June, 2023	0.364	0.070	0.015	0.021	0.015	
06-07 June, 2023	0.493	0.071	0.017	0.027	0.016	
07-08 June, 2023	0.489	0.052	0.016	0.025	0.016	
08~09 June, 2023	0.490	0.032	0.018	0.029	0.017	
09-10 June, 2023	0.503	0.049	0.016	0.026	0.019	
10-11 June, 2023	0.412	0.072	0.018	0.029	0.017	
11-12 June, 2023	0.475	0.061	0.017	0.025	0.015	
7 Days Average Value	0.461	0.058	0.017	0.026	0.016	
Target Value	10.26	0.1	0.025	0.05	0.02	

Note: The target value of CO, NO2 and SO2 were converted from ppm units to mg/m3. The conversion equation are as follows;


1. (CO, mg/m3) = (CO, ppm) * (Molecular Weight of CO (28)) / 24.45 at 25°C and 1 atm condition

2. (NO2, mg/m2) = (NO2, ppm) * (Molecular Weight of NO2 (46)) / 24.45 at 25°C and 1 atm condition

3. (SO2, mg/m) = (SO2, ppm) * (Molecular Weight of SO2 (64)) / 24.45 at 25°C and 1 atm condition

Source: Myanmar Koei International Ltd.

Wind direction and wind speed were measured at AQ-1. Hourly average values of measured wind direction and wind speed data are described in Appendix-1. Frequency of wind direction at AQ-1 is described in Figure 2.5-1. According to the wind data analysis, the prevailing wind direction during monitoring was East-Southeast (ESE) and the least frequency wind direction was West (W). During the monitoring period, while the maximum wind speed was 1.6 m/s, the average speed is 0.4 m/s. The calm wind is 67%, whereas the calm wind is defined below 0.5 m/s. As the average wind speed is lower than the defined calm wind, it is assumed that the wind was calm during the monitoring period.

Source: Myanmar Koei International Ltd.

Figure 2.5-1 Frequency of Wind Direction at AQ-1

Remark: N North NNE North-Northeast NE Northeast ENE East-Northeast E East ESE East-Southeast SE South-Southeast SSE South-Southeast SSE South-Southwest SW South-Southwest WSW West-Southwest W West WNW West-Northwest NW Northwest NNW North-Northwest

CHAPTER 3: CONCLUSION AND RECOMMENDATION

By means of the result of air quality at AQ-1, concentration of CO, NO₂, PM₂₅, PM₁₀ and SO₂ during seven days monitoring did not exceed the target value, thus there are no impacts on the surrounding environments.

The periodical monitoring will be necessary to grasp the environmental conditions in operation stage of Thilawa SEZ Zone B. The mitigation measures for environmental management will be considered in collected periodical environmental data and has to be reviewed in future.

APPENDIX-1 HOURLY AIR RESULTS

			eo.	NO.	PMzs	P\$1 ₀	505	Wind Speed	Wind D	leen toon
Dale	Tim		mg/m³	ga (L ^A m.)	misam.	mene*	mental a	PRZS	Deg	Direction
	\$ 23,70	1.12	Hourty	Hourly	Hourts	House	House	Clourty	House	Henry
05 June, 2023	13:00	13:59	0 127	0.070	0.012	0.014	0.015	80.72	120	ESE
05 June, 2023	14:00	14.59	0.475	0.030	0.010	0.015	0.016	1.05	128	SF.
05 June, 2023	15:00 -	15:59	() 548	0.032	0.017	0.024	0.014	113	127	SE
U5 June, 2023	16(0)	16:59	(0517)	0.058	0.019	0,027	0.016	1.12	179	S
05 June, 2023	17.00 -	17:59	0.334	0.071	0.015	0.021	0.015	0.83	212	SSW
05 June, 2023	18:00	18:59	0.190	0.096	U.U15	0.021	0.014	0.43	143	SE
05 June, 2023	19:00	19.59 i	9.104	0.098	0.012	0.018	0.016	0.18	179	S
05 June, 2023	20.00	20:59	U.148	0.097	0.011	0.016	0.017	0.12	79	F.
05 June, 2023	21:00	21:59	0.190	0.097	0.011	0.016	0.015	0.05	90	E
05 June, 2023	22:00 -	22:59	0.573	0.094	0.014	0.020	0.013	0.15	103	ESE
05 Jane, 2023	23:00 ~	23:59	0.582	0.084	0.012	0.018	0.013	0,23	107	ESE
06 June, 2023	00:00 -	BU:59	0.569	0.089	0.018	0.025	0.014	0.08	96	E
06 June, 2023	01:00	01.59	0,517	0.084	0.010	0.014	0.017	0.20	122	ESE
06 June, 2023	02:00 ~	03:59	0.353	0.085	0.010	0.015	0.017	0.14	96	F.
06 June, 2023	03:00	03:59	0.311	0.080	0.012	0.017	0.014	0 02	43	NE
06 June, 2023	: 04:00	04:59	0.167	0.077	0.024	0.635	0.014	0.03	37	NF.
06 June, 2023	05:00 ~	05.59	0.165	0.076	0.025	0.035	0.015	0.00	29	AVE
06 June, 2023	96:00	06:59	0.301	0.078	0.025	9.036	0.014	0.02	55	NE.
06 June, 2023	07:00 ~	07.59	0.342	0.069	0.020	0.028	0.014	0.03	46	NE
96 June, 2023	08:00	08.59	0.376	0,045	0.015	0.022	0.014	0.03	49	NE
06 June, 2023	09:00	09:59	0.573	0.036	0.010	0.015	0.015	U.30	51	NE
06 June, 2023	10.00	10:59	0.621	0,009	0.010	0.015	0.014	0.87	51	NE
06 June, 2023	11 00	11:59	0.425	0.018	0.014	0.020	0.014	0.62	57	ENB
06 June, 2023	12:00 -	12:59	u.339	0.098	0.011	0.017	0.014	0.15	157	SSE
	Max	60	0.021	0.098	U.U25	0.036	0.017	1		
	Avg		U.364	0.070	0.015	0,021	0.015			
	Mic		0.104	0.009	0.010	0.014	0.013	1		

	Time		CO	NO ₂	PM _{2.5}	PM10	SO ₂	Wind Speed	Wind D	irection
Date			4000	mg/m³	mg/m³ mg/m³ Hourly Hourly	mg/m³ Hourly	mg/m³ Hourly	m/s Hourly	Deg.	Direction
				Hourly					Hourly	Hourly
06 June, 2023	13:00 -	13:59	0.573	0.057	0.021	0.045	0.015	0.40	67.83	ENE
06 June, 2023	14:00 -	14:59	0.490	0.079	0.020	0.049	0.014	0.30	61.50	ENE
06 June, 2023	15:00 ~	15:59	0.449	0.073	0.020	0.029	0.015	0.17	41.00	NE
06 June, 2023	16:00 -	16:59	0.263	0.085	0.012	0.017	0.015	0.23	99.00	Е
06 June, 2023	17:00 -	17:59	0.349	0.076	0.014	0.019	0.015	0.55	111.33	ESE
06 June, 2023	18:00 ~	18:59	0.584	0.060	0.023	0.034	0.014	0.48	106.67	ESE
06 June, 2023	19:00 -	19:59	0.515	0.069	0.021	0.030	0.014	0.27	107.67	ESE
06 June, 2023	20:00 -	20:59	0.563	0.063	0.012	0.018	0.015	0.27	101.33	ESE
06 June, 2023	21:00 -	21:59	0.476	0.062	0.016	0.022	0.015	0.13	97.33	E
06 June, 2023	22:00 ~	22:59	0.595	0.067	0.023	0.033	0.014	0.17	90.00	E
06 June, 2023	23:00 ~	23:59	0.625	0.064	0.020	0.029	0.014	0.43	105.67	ESE
07 June, 2023	00:00 -	00:59	0.551	0.062	0.021	0.030	0.014	0.70	93.00	Е
07 June, 2023	01:00 ~	01;59	0.557	0.065	0.019	0.028	0.015	0.45	111.83	ESE
07 June, 2023	02:00 ~	02:59	0.578	0.060	0.013	0.019	0.014	0.20	105.20	ESE
07 June, 2023	03:00 ~	03:59	0.625	0.057	0.018	0.026	0.019	0.03	80.50	E
07 June, 2023	04:00 -	04:59	0.423	0.061	0.023	0.033	0.018	0.10	153.50	SSE
07 June, 2023	05:00 -	05:59	0.542	0.092	0.023	0.044	0.017	0.03	64.00	ENE
07 June, 2023	06:00 -	06:59	0.602	0.099	0.013	0.019	0.016	0.30	152.67	SSE
07 June, 2023	07:00 ~	07:59	0.206	0.098	0.013	0.019	0.017	0.27	97.33	E
07 June, 2023	08:00 ~	08:59	0.455	0.096	0.013	0.019	0.017	0.40	96.83	E
07 June, 2023	09:00 -	09:59	0.342	0.092	0.012	0.018	0.016	0:37	86.50	В
07 June, 2023	10:00 -	10:59	0.454	0.095	0.013	0.019	0.015	0.33	86.50	Е
07 June, 2023	11:00 ~	11:59	0.354	0.061	0.016	0.023	0.017	0.80	113,83	ESE
07 June, 2023	12:00 ~	12:59	0.673	0.023	0.011	0.016	0.018	0.52	83.50	Е

Max	0.673	0.099	0.023	0.049	0.019
Avg	0.493	0.071	0.017	0.027	0.016
Min	0.206	0.023	0.011	0.016	0.014

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W 6		CO* 🖖	' NO	PMLs	PM ₀	50,	Wlad Speed	W brief D	irection
Parte		Time		mg/m³	megn	- 1880年	ma me	ogo '	m/s _	Deg.	Direction
		: (T)		Hourly	Houndy	Hourly	Henry	Hoprity	Hourly .	House	Hourty
07 June, 2023	13:00	992	13:59	U.523	0.004	0.012	0.015	0014	0.92	115.67	ESE
07 June, 2023	14.00	-,	14:59	0.537	0.004	0.024	0.035	0.013	0.80	119.00	SSE
07 June, 2023	15:00	(8 <u>.</u>	15:59	0.364	(1097	0.016	0.024	0.015	0.97	197.67	ssw
07 June, 2023	16:00		16:59	0.114	0.082	0.015	0.022	0.012	0.52	206.50	SSW
07 June, 2023	17:00	5 <u>14</u> 2	17:59	0.297	0.060	0.016	0.023	0.018	0.23	179.83	Š
07 June, 2023	18:00	8,78	18:59	U.205	0.050	0.024	0.035	0.015	0.02	223.00	sw
07 June, 2023	19.00	~	19:59	0.444	0.089	0 011	0.017	0.015	0.78	241 00	WSW
07 June, 2023	>0:00	24.	20:59	0.584	0.098	0.013	0.019	810.0	0.07	222.00	SW
07 June, 2023	21.00	-	21.59	0.562	0.075	0.016	0.023	0.018	0.12	23(0.50)	SW
07 June, 2023	22:00	**	22:59	0.580	0,073	0.012	0.018	0.015	0.20	217.17	SW
07 June, 2023	23:00	-2	23:59	0.605	0.060	810.0	0.026	0.014	0.10	192.33	ssw
08 June, 2023	00:00	3	00:59	0.664	(1.057	0.014	0.023	0.017	0.15	149.67	SSE
08 June, 2033	01:00	j. #65	01.59	0.584	0.054	0.022	0.050	U.018	11,05	143.83	SE
(18 June, 2023	02:00	1000	02:59	0.554	0.054	0.017	0.028	0.016	0.08	184.20	S
08 June, 2023	03:00	. 4	03.59	0.535	0.041	0.017	0.079	0.017	0.00	158.60	SSE
98 June, 2023	04:00	3000	04.59	0.548	0.053	0.016	0.029	0.015	0.15	219.67	SW
98 June, 2023	05:00	-	05:59	0.556	0.043	0.017	0.029	0.012	0.02	109.33	ESE
08 June, 2023	06:00	23	06.59	0.602	0.048	0.017	0.029	0.015	0.02	142.3.3	SF
08 June, 2023	07:00	855	07:59	0.282	0.043	Ø.018	0.028	0.018	0.00	125.50	SE
08 June, 2023	08:00	S -1 0	08.59	0.461	0.607	. 9,014	0.020	0.018	(),4()	118.90	ESE
08 June, 2023	09:00	23	09:59	0.503	0.017	0.012	0.016	0.015	0.65	. 151.17	SSE
08 June, 2023	10.00	85th)	10.59	0.554	0.097	0.011	0.016	0.014	0.60	116.33	ESE
08.June, 2023	11.00	839	11:59	0.565	0.034	0.013	0.016	0.017	0.33	106.17	ESE
68 June, 2023	12.00	244	12:59	0.554	0.005	0.017	0.005	0.018	0.58	125.83	SE

Max	0.614	0.098	0.024	0.050	0.018
 Avg	0.489	0.052	0.046	0.025	0.016
Min	6.114	0.004	0.011	0.015	0.012

	Time		CO	NO ₂	PM2.5	PM10	SO ₂	Wind Speed	Wind D	irection	
Date			mg/m³	mg/m³	mg/m³	mg/m³	mg/m³	m/s	Deg.	Direction	
				Hourly	Hourly	Hourty	Hourly	Hourly	Hourly	Hourly	Hourly
08 June, 2023	13:00	8	13:59	0.486	0.054	0.012	0.017	0.016	1.60	233.67	SW
08 June, 2023	14:00	-	14:59	0.328	0.019	0.013	0.023	0.017	0.63	144.00	SE
08 June, 2023	15:00	2	15:59	0.615	0.004	0.015	0.026	0.015	0.58	140.83	SE
08 June, 2023	16:00	5	16:59	0.559	0.004	0.017	0.029	0.016	0.80	140.50	SE
08 June, 2023	17:00	88	17:59	0.237	0.095	0.017	0.027	0.018	0.73	169.50	8
08 June, 2023	18:00	2	18:59	0.246	0.068	0.019	0.027	0.015	0.32	208.17	SSW
08 June, 2023	19:00	=	19:59	0.626	0.049	0.012	0.017	0.014	0.30	152.33	SSE
08 June, 2023	20:00	88	20:59	0.532	0.044	0.015	0.022	0.017	0.20	256.33	WSW
08 June, 2023	21:00	-	21:59	0.594	0.038	0.022	0.031	0.016	0.27	247.33	WSW
08 June, 2023	22:00	88	22:59	0.474	0.032	0.020	0.037	0.016	0.22	250.50	WSW
08 June, 2023	23:00	-	23:59	0.574	0.022	0.023	0.042	0.017	0.07	202.17	SSW
09 June, 2023	00:00	-	00:59	0.620	0.038	0.022	0.032	0.018	0.03	141.33	SE
09 June, 2023	01:00	20	01:59	0.574	0.040	0.014	0.021	0.018	0.02	124.67	SE
09 June, 2023	02:00	-	02:59	0.555	0.040	0.013	0.019	0.018	0.00	183.80	S
09 June, 2023	03:00	2	03:59	0.405	0.043	0.021	0.031	0.019	0.00	66.17	ENE
09 June, 2023	04:00	==	04:59	0.419	0.040	0.022	0.031	0.019	0.02	62.33	ENE
09 June, 2023	05:00	×	05:59	0.279	0.050	0.021	0.039	0.018	0.00	76.17	ENE
09 June, 2023	06:00	-	06:59	0.372	0.054	0.021	0.046	0.016	0.07	72.33	ENE
09 June, 2023	07:00	~	07:59	0.470	0.021	0.015	0.022	0.018	0.57	114.83	ESE
09 June, 2023	08:00	75	08:59	0:569	0.004	0.019	0.035	0.015	0.78	115.83	ESE
09 June, 2023	09:00	E.	09:59	0.577	0.004	0.018	0.037	0.014	0.80	128.17	SE
09 June, 2023	10:00	-	10:59	0.556	0.004	0.014	0.024	0.017	0.52	86.83	В
09 June, 2023	11:00	55	11:59	0.596	0.004	0.023	0.033	0.017	0.97	133.00	SE
09 June, 2023	12:00		12:59	0.500	0.008	0.019	0.037	0.016	0.88	135.67	SE

Max.	0.626	0.095	0.023	0.046	0.019
Avg	0.490	0.032	0.018	0.029	0.017
Min	0.237	0.004	0.012	0.017	0.014

7 7 7 9			w.	i co	802	PALe	P.M.	801	Wind Sperd	Winds)	trection
Bate		Time		higan	明 色页	orizm,	ngm-	argm ⁴	300 18	Deg	Descrion
			33,300	Bouck	Hourt	flowerty	Hourt	Boundy	Howely	Hourty	Hourty
09 June, 2023	13.00	-	13:59	(I 651	0.004	0.014	0.019	0.018	1.10	136.67	ŠE.
09 June, 2023	14:00	- S.	14:59	ก.495	0.005	0.020	0.037	0.020	0.97	128,67	SE
09 June, 2023	15:00	860	15:59	0.555	0.034	0.019	0.040	0.019	0.87	135.83	SE
09 June, 2023	16:00	298	16:59	0.510	0.036	0.013	0.019	0.017	0.80 .	127,33	SE
09 June, 2023	17:00	122	17:59	0.506	0.056	0.019	0.035	0.019	0.73	128.00	Ste
09 June, 2023	18.00		18:59	0 360	0.076	0.018	0.026	0.019	0.57	139.50	SE
09 June, 2023	19.00	i.	19:59	0.476	0.092	0.013	9.018	0.019	0.42	136.83	89.
09 June, 2023	30.00	- 5	20:59	0.156	0 091	0.011	0.015	0.018	9.18	184.17	S
09 June, 2023	21.00	957	21:59	0.623	0.084	0.020	0.045	0.019	0.55	350.50	WSW
09 June, 2023	22:00	**	22:59	0.646	0.080	0.019	0.034	0.018	0.75	249,17	WSW
09 Јипе, 2023	23 00	142	23:59	0.559	0.070	0.014	U.U24	0.018	1),47	253.17	WSW
10 June, 2023	00.00	950	00:59	0.492	0.067	0.010	0.015	0.017	0.43	208.17	85W
10 June, 2023	01.00	(rec)	01:59	0.621	0.067	0.012	0.017	0.018	0.58	247.67	wsw
10 June, 2022	02 00	522	02:59	0.547	0.077	0.013	0.034	0.020	0.22	250,40	WSW
10 June, 2023	03:00	(823)	V3:59	0.604	0.072	0.010	0.014	0.018	0.05	211.67	SSW
10 June, 2023	04.00	~	84:59	0.590	0.068	0.014	0.000	0.018	0.27	145.33	SE
10 June, 2023	05:00		US:59	0.433	0.059	0.021	0.030	0.020	0.30	102.00	ESE
10 June, 2023	06 00	- T	06:59	0.428	0.058	0.014	0.024	0.019	0.18	121.83	ESE
10 June, 2023	07.00	100	07:59	0.496	0.051	0.019	0.038	0.017	0.18	103.00	ESE
10 June, 2023	08 00		08:59	0.435	0.021	0,020	0.037	0.048	0.37	120.33	ESE
10 June, 2023	09.00	~	09;59	0.353	0.004	0.018	0.028	0.019	0.68	132,50	SE
10 June, 2023	10:00		10:59	0.415	0.004	0.013	0.019	0.019	0.92	138.83	SE
10 June, 2023	11:00	-	11:59	0.542	0.004	0.011	0.016	0 021	0.82	165.00	SSE
10 June, 2023	12:00	W.	12:59	0.590	0.004	0.022	0.039	0.021	0.63	169.00	5

Max	0.651	0.092	0.022	0.045	0.021
Avg	0.503	0.049	0.016	9.026	0.019
Min	0.156	0.004	0.010	0.014	0.017

	The sales of	CO	NO ₂	PM _{2,5}	PM10	SO ₂ mg/m ³ Hourly	Wind Speed m/s Hourly	Wind Direction	
Date	Time	mg/m³	mg/m³	mg/m³ Hourly	mg/m³ Hourly			Deg. Hourly	Direction
		Hourly	Hourly						
10 June, 2023	13:00 - 13:5	0.617	0.004	0.016	0.036	0.019	0.78	143.67	SE
10 June, 2023	14:00 - 14:5	0.519	0.040	0.018	0.026	0.016	0.97	170.33	S
10 June, 2023	15:00 - 15:5	0.205	0.097	0.017	0.024	0.019	1.18	217,33	SW
10 June, 2023	16:00 ~ 16:5	0.176	0.091	0.020	0.029	0.015	0.57	229.00	SW
10 June, 2023	17:00 - 17:5	0.222	0.090	0.016	0.024	0.018	0.77	164.17	SSE
10 June, 2023	18:00 - 18:5	0.319	0.092	0.012	0.018	0.016	0.62	110.00	ESE
10 June, 2023	19:00 ~ 19:5	0.587	0.088	0.014	0.019	0.017	0.98	111.00	ESE
10 June, 2023	20:00 - 20:5	0.395	0.085	0.016	0.024	0.020	1.02	112:50	ESE
10 June, 2023	21:00 ~ 21:5	0.547	0.096	0.022	0.032	0.018	0.62	110.83	ESE
10 June, 2023	22:00 - 22:5	0.495	0.096	0.017	0.025	0.016	0.20	88.67	Е
10 June, 2023	23:00 ~ 23:5	0.527	0.078	0.013	0.019	0.017	0.40	117.67	ESE
11 June, 2023	00:00 ~ 00:5	0.533	0.059	0.020	0.029	0.015	0.17	142.50	SE
11 June, 2023	01:00 - 01:5	0.568	0.071	0.023	0.033	0.017	0.00	102.67	ESE
11 June, 2023	02:00 ~ 02:5	0.280	0.060	0.014	0.019	0.018	0.00	29.20	NNE
11 June, 2023	03:00 - 03:5	0.608	0.057	0.023	0.034	0.020	0.00	62.00	ENE
11 June, 2023	04:00 ~ 04:5	0.558	0.069	0.023	0.036	0.017	0.13	85.00	Е
11 June, 2023	05:00 - 05:5	0.526	0.065	0.024	0.044	0.015	0.12	276.00	W
11 June, 2023	06:00 ~ 06:5	0.209	0.062	0.022	0.040	0.018	0.00	49.67	NE
11 June, 2023	07:00 - 07:5	9 0.410	0.059	0.021	0.039	0.016	0.00	93.00	E
11 June, 2023	08:00 ~ 08:5	0.473	0.061	0.019	0.040	0.019	0.25	196.33	SSW
11 June, 2023	09:00 ~ 09:5	9 0.215	0.100	0.020	0.038	0.017	0.22	206.83	SSW
11 June, 2023	10:00 ~ 10:5	9 0.316	0.069	0.012	0.017	0.020	0.37	143.83	SE
11 June, 2023	11:00 - 11:5	9 0.417	0.071	0.019	0.028	0.018	0.05	194.33	SSW
11 June, 2023	12:00 - 12:5	9 0.162	0.077	0.017	0.025	0.019	0.02	122.83	ESE

Max	0.617	0.100	0.024	0.044	0.020
Avg	0.412	0.072	0.018	0.029	0.017
Min	0.162	0.004	0.012	0.017	0.015

	\$773	5,738,93	Ç0.	NO.	PMes	PM or	-1/302	What Speed	Winds	iredia
Bote	ri	me	m#m²	2002/500	bog/sal	wew "	BAYAL	1855	of Deg.	Digertion
	(a) 16 (c)		Hourty	Huarly	Hours	Hourts	Floorby	Hounty	Hourk	Henry
11 June, 2023	13:00	13.59	0.225	0.069	0.019	0.027	0.015	0.00	138.33	SE
11 Jane, 2023	14:00	- 14.59	0.520	0.054	0.013	0.019	0.014	0.12	161.67	SSE
11 June, 2023	15:00 -	- 15:59	0.497	0.033	0.015	0.025	0.017	0.27	225.67	SW
11 June, 2023	16:00	~ 16.59	0.375	0.004	0.014	0.020	0.013	0.15	148,33	SSE
11 June, 2023	17:00	- 17-59	0.651	0.004	0.018	0.039	0.014	0.38	116,00	ESE
11 June, 2023	18:00 -	- 18.59	0.576	0.004	0.017	0.024	0.017	0.05	98.00	Œ
11 June, 2023	19:90	- 19:59	49,650	0.015	0.013	0.019	0.017	0.48	109.50	ESE
11 June, 2023	20:00 -	- 20.59	0.526	0.093	9.018	0.025	0.013	0.85	201.83	SSW
11 June, 2023	21:00	- 21.59	0.259	0 (199	0.013	0.019	0.014	0.17	157.67	SSE
11 June, 2023	22:00	- 22:59	0.513	0.087	0.015	0.022	0.016	0.17	164.67	SSF
11 Jane, 2023	23:00 -	- 23.59	0.557	0.072	0.015	0.021	0.017	0.03	106 67	ESE
(3 June, 2023	00:00	- 00:59	0.553	0.059	0.012	0.017	0.017	0.10	67.33	ENE
12 June, 2023	01.00	- 01:59	0.549	0.056	0.016	0.023	0.014	0.27	128 00	: SE
12 June, 2023	02:00	- 02:59	0.571	0.060	0.022	0.032	0.014	U.25	151.33	SSE
12 Jane: 2023	03:00	~ 03:59	0.649	0.047	0.021	0.030	0.015	0.12	195 17	SSW
12 June, 2023	04.00	- 14:59	0.428	9.071	0.017	0.025	0.016	0.07	98.83	E
12 June, 2023	05:00	- 05:59	0 177	0.084	0.021	0.031	0.014	U.25	114.33	ESE
12 June, 2023	06 00	- 06:59	0.536	0.076	1 0.020	0.029	0.013	0.17	114.00	ESE
12 June, 2023	07.00	~ 07:59	0.352	0.063	0.013	0.018	0.012	0.37	108.17	ESE
12 June, 2023	03:00	U8:59	0.443	0.049	0.019	0.027	0.016	0.65	137.33	SE
12 June, 2023	09.00	~ 00:50	0.534	0.092	0.023	0.033	0.017	0.58	238.33	WSW
12 June, 2023	10.00	~ 10:59	0.514	0.098	0.024	0.035	0.014	0.35	230.17	SW
12 June, 2023	11:00	11:59	0.556	0.097	0.018	0.025	0.013	9.20	114.50	BSE
12 June, 2023	12.00	~ 12.59	0.201	0.079	0.019	0.027	0.015	0.47	115.83	ESE

Max	0.651	0.099	0.024	0.039	0.017
Avg	0.475	0.061	0.017	0.025	0.015
Min	0.177	0.004	0.012	0.017	0.012

APPENDIX-2 CERTIFICATE OF CALIBRATION

SYSTEM HEALTH CHECK REPORT

Imformation

Instrument	Harsemmer
Model	EPAS
Senal number	918189
Unit Sensor	CO.NOZOUNO:SO2FMID
	PM25/T & RH,WS/WD,SLIRE
Customer	-Myanmar Koci International LTD
Date	Feb 31" 2023

Check List

Physical Check	-OK
Supply Voltage Check	-OK
PM 10,PM2.5 Air Flow Check	
SLICHT & RH,WS/WD sensor Check	-OK
NO Sensor Health Check	- Moderate
CO.NOZ.O3.SO2 Sensor Health Check	- Still Good
Lithium Battery Voltage Check	OK
Data Logging Check	
	OK:

Recommend

Need to replace new acid gas scrubber (schedule is 6 months).

Next to replace internal filters (schedule is 6 months).

Next to perform factors calibration or in field calibration or selectule is 12 months.

Performed by

Plan Saw Hast

Technical Service Engineer

NAKOVA COLEDO

Approved by

Mun ()

Technical Service Manager

Nily Py Tae : Mandalas

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3 (Operation phase)

Appendix-E

Noise and Vibration Monitoring Report June 2023

NOISE AND VIBRATION MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA THILAWA SEZ ZONE B (PHASE 1, 2 & 3 OPERATION STAGE)

(BI-ANNUALLY MONITORING)

June 2023 Myanmar Koci International Ltd.

TABLE OF CONTENTS

CHAPTER 1: OUTLINES AND SUMMARY OF MONITORING PLAN	
1.1 General	
1.2 Outlines of Monitoring Plan.	
CHAPTER 2: NOISE AND VIBRATION LEVEL MONITORING	2
2.1 Monitoring Item	2
2.2 Monitoring Location	2
2.3 Monitoring Method	5
2.4 Monitoring Results	ł
CHAPTER 3: CONCLUSION AND RECOMMENDATION10)
LIST OF TABLES	
Table 1.2-1 Outlines of Noise and Vibration Level Monitoring	E
Table 2.1-1 Monitoring Parameters for Noise and Vibration Level	2
Table 2.4-1 Results of Noise Levels (LAeq) Monitoring at NV-1	1
Table 2.4-2 Results of Noise Levels (LA _{eq}) Monitoring at NV-2	1
Table 2.4-3 Hourly Noise Level (LAeq) Monitoring Results at NV-1	5
Table 2.4-4 Hourly Noise Level (LA _{eq}) Monitoring Results at NV-2)
Table 2.4-5 Results of Vibration Levels (Lv10) Monitoring at NV-1	7
Table 2.4-6 Results of Vibration Levels (Lv10) Monitoring at NV-2	7
Table 2.4-7 Results of Hourly Vibration Levels (Lv10) Monitoring at NV-1	8
Table 2.4-8 Results of Hourly Vibration Levels (Lv10) Monitoring at NV-2	3
LIST OF FIGURES	
Figure 2.2-1 Location of Noise and Vibration Level Monitoring Points	2
Figure 2.3-1 Status of Noise and Vibration Level Monitoring at NV-1 and NV-2	3
Figure 2.4-1 Results of Noise Levels (LAeq) Monitoring at NV-1	6
Figure 2.4-2 Results of Noise Levels (LAeq) Monitoring at NV-2	6
Figure 2.4-3 Results of Vibration Levels (Lv10) Monitoring at NV-1	9
Figure 2.4-4 Results of Vibration Levels (Lv10) Monitoring at NV-2	9

CHAPTER 1: OUTLINES AND SUMMARY OF MONITORING PLAN

1.1 General

Thilawa Special Economic Zone (TSEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd., (MJTD) has a responsibility to carry out regular environmental monitoring in the industrial area of Zone B in accordance with the approved Environmental Impact Assessment (EIA) report with Environmental Management Plan (FMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area.

1.2 Outlines of Monitoring Plan

To assess the environmental condition under the operation of industrial area in and around Thilawa SEZ Zone B, noise and vibration levels had been monitored from 5 June 2023 to 6 June 2023 as follows;

Table 1.2-1 Outlines of Noise and Vibration Level Monitoring

Monitoring Date	Monitoring Item	Parameters	Number of Points	Duration	Monitoring Methodology
6 June 2023	Notse Level	LA _R (dB)	I (NV-1)	8 hours	On site measurement by "Rion NL 42 sound level meter"
5 June 2023	Noise Level	$\operatorname{La}_{\mathbf{x}_i}(\mathrm{d}B)$	(NV-2)	8 hours	On-site measurement by "Rion N1, 43 sound level meter"
6 June 2023	Vibration Level	$L_{\rm eld}\left({\rm d}B\right)$	1 (NV-1)	& hours	On-site measurement by "Vibration Level Meter- VM-53A"
5 June 2023	Vibration Level	Luio (dB)	1 (NV-2)	8 hours	On-site measurement by "Vibration Level Meter- VM-53A"

Source: Myanmur Koei International Ltd.

CHAPTER 2: NOISE AND VIBRATION LEVEL MONITORING

2.1 Monitoring Item

The noise and vibration level monitoring items are shown in Table 2.1-1.

Table 2.1-1 Monitoring Parameters for Noise and Vibration Level

No.	Item	Parameter
1	Noise	A-weighed loudness equivalent (LAeq)
2	Vibration	Vibration level, vertical, percentile (Lviii)

Source: Myanmar Koei International Ltd.

2.2 Monitoring Location

Noise and vibration levels were measured in the northeast corner of the Thilawa SEZ Zone B, namely NV-1 (N: 16°40'18.22", E: 96°17'18.18") for traffic noise concerned and inside the monastery compound of Phalan village, adjacent to the southern boundary of the Thilawa SEZ Zone B, as NV-2 (N: 16°39'24.90", E: 96°17'16.70") for sensitive area noise level. The location of the noise and vibration monitoring points are shown in Figure 2.2-1.

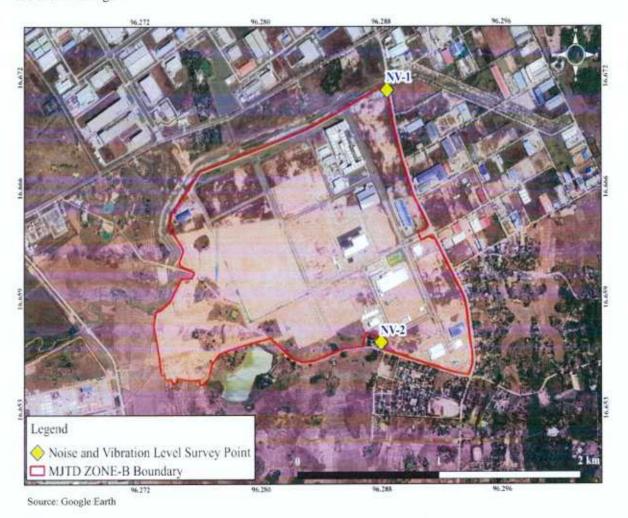


Figure 2.2-1 Location of Noise and Vibration Level Monitoring Points

NV-1

NV-1 is located in front of temporary gate of operation site of Thilawa SEZ Zone B and next to Thilawa Development Road. The surrounding area are Zone A in the northwest, local industrial zone in the east respectively. Possible sources of noise and vibration is generated from construction activities and road traffic.

NV-2

NV-2 is located inside the monastery compound of Phalan village, adjacent to the southern boundary of the Thilawa SEZ Zone B and surrounded by the residential houses of Phalan village in the south and the fields in west. Thilawa SEZ Zone A is distanced about 2 km north of NV-2 and local industrial zone about 1 km northeast respectively. Possible sources of noise and vibration is generated from construction activities from Zone B and daily human activities from nearby Phalan village.

2.3 Monitoring Method

Noise level was measured by "Rion NL-42 sound level meter" and automatically records every 10 minutes in a memory card. The vibration level meter, VM-53A (Rion Co., Ltd., Japan), was accompanied by a 3-axis accelerometer PV-83C (Rion Co., Ltd.) and it was placed on solid soil ground. Vertical vibration (Z axis), L_v, was measured every 10 minutes within the adaptable range of (10-70) dB at NV-1 and NV-2 and recorded to a memory card.

The measurement period of noise and vibration was 8 hours for each monitoring point. The status of the noise and vibration level monitoring on NV-1 and NV-2 are shown in Figure 2.3-1.

Source: Myanmar Koei International Ltd.

Figure 2.3-1 Status of Noise and Vibration Level Monitoring at NV-1 and NV-2

2.4 Monitoring Results

Noise Monitoring Results

Noise monitoring results are separated as daytime (6:00 AM to 10:00 PM) and evening time (10:00 PM to 6:00 AM) time frames for NV-1 and daytime (7:00 AM to 7:00 PM), evening time (7:00 PM to 10:00 PM) and night time (10:00 PM to 7:00 AM) time frames for NV-2 respectively. Noise measurement was carried out for 8-hour as working time (8:00 AM to 4:00 PM) at the designated locations instead of 24-hours due to the safety reason and risk avoidance. The monitoring results are summarized in Table 2.4-1 and Table 2.4-2. Hourly noise level (LA_{eq}) monitoring results at NV-1 and NV-2 are shown in Table 2.4-3 and Table 2.4-4. Figure 2.4-1 and Figure 2.4-2 show the results of noise level (LA_{eq}) at NV-1 and NV-2. Comparing with the target value of noise level in operation stage prescribed in EIA report for Thilawa SEZ development project Zone B, all results were under the target values. Regarding the hourly noise level, one-hour LA_{eq} during 11:00 - 12:00 at NV-2 was slightly higher than the target value though there were no construction activities at that time. According to the field surveyor record, it was due to the heavy rain at that time. Therefore, it is considered that there is no impact from operation activities of Zone B to the surrounding environment.

Table 2.4-1 Results of Noise Levels (LAeq) Monitoring at NV-1

n.	(Traffic Noise Level) Equivalent Noise Level (LAeq, dB)			
Date	Day Time (6:00 AM – 10:00 PM)	Night Time (10:00 PM – 6:00 AM)		
6 June, 2023	62			
Target Value	75	70		

Note: Target value is applied to the noise standard along main road stipulated in the Noise Regulation Law (Japan) (Law No. 98 of 1968, Latest Amendment by Law No. 91 of 2000).

Source: Myanmar Koei International Ltd.

Table 2.4-2 Results of Noise Levels (LAco) Monitoring at NV-2

	(A side next to sensitive area such as monastery, hospital and school)) Equivalent Noise Level (LAeq, dB)				
Date	Day Time (7:00 AM - 7:00 PM)	Evening Time (7:00 PM – 10:00 PM)	Night Time (10:00 PM – 7:00 AM)		
5 June, 2023	56	8			
Target Value	60	55	50		

Note: Target value is applied to the noise level during the operation stage in the EIA Report for Thilawa SEZ Development Project (Industrial Area of Zone B).

Source: Myanmar Koei International Ltd.

Table 2.4-3 Hourly Noise Level (LAsq) Monitoring Results at NV-1

Time	Result LAru (dB)	Each Category LAcq (dB)	Target Value La ₆₀ (dB)	Remark
6:00-7:80 7:00-8:00 8:00-9:00 9:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00 16:00 16:00-17:00 17:00-18:00	60 62 61 63 62 62 62 63	62	75	No construction Activitie
13:00-13:00 13:00-19:00 - 19:00-20:00 - 20:00-21:00 - 21:00-22:00 -				
22:00-23:00 23:00 24:00 24:00-1:00 1:00-2:00 2:00-3:00 3:00-4:00 4:00-5:00		唇	70	
	6:00-7:00 7:00-8:00 8:00-9:00 9:00-10:00 10:00-11:00 11:00-12:00 12:00-13:00 13:00-14:00 15:00 16:00 16:00-17:00 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00 22:00 22:00-23:00 24:00-1:00 1:00-2:00 24:00-1:00	Time LA _{eq} (dB) 6:00-7:00 - 7:00-8:00 - 8:00-9:00 60 9:00-10:00 62 10:00-11:00 61 11:00-12:00 63 12:00-13:00 62 13:00-14:00 62 15:00 16:00 63 16:00-17:00 - 17:00-18:00 - 18:00-19:00 - 20:00-20:00 - 21:00 22:00 - 23:00 24:00 - 24:00-1:00 - 1:00-2:00 - 2:00-3:00 - 3:00-4:00 -	Time LA _{eq} (dB) Category (dB)	Time LA _{eq} (dB) Category LA _{eq} (dB) LA _{eq} (dB)

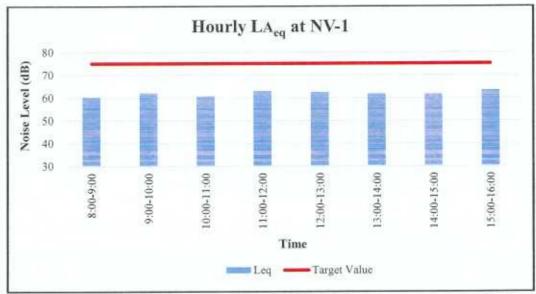
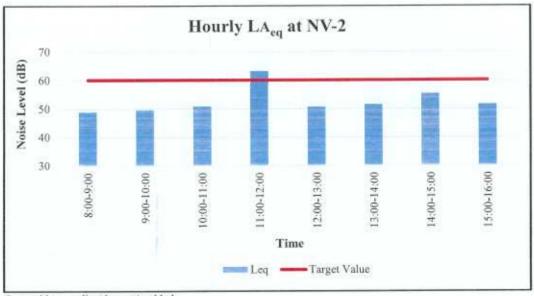

Source: Myanmur Koei International Ltd.

Table 2.4-4 Hourly Noise Level (LA_{eq}) Monitoring Results at NV-2

Date	Time	(LAsq. dB)	(LArq, dB) Each Category	(LA _{eq} , dB) Target Value	Remark		
7;00	7:00-8:00	75 BBS					
	8:00 9:00	49					
	9:00-10:00	49					
	10:00-11:00	51	1	1	i		
	11:00-12:00	6.3	15.				
	12:00-13:00	51	22	225			
	13:00-14:00	51	56	60			
	14:00-15:00	55 .					
	15:00-16:00	51	tic ∰	f ^c			
	16.00-17:00	18					
	17:00-18:00						
6.1	18:00-19:00	5 DOM		Flore in	15		
5 June, 2023	19;00-20;00			-:	Ne construction Activities		
	20:00-21:00	12		55			
	21:00-22:00	100			ļ		
	22:00-23:00		\$	6	6	8 3	5
	23:00-24:00	s Joe					
	24:00-1:00	12	*	19			
	1:00 2:00	32				*	
	2:00-3:00	194		Sa			
	3:00-4:00	18					
	4:00-5:00						
	5,00-6:00						
	6:00-7:00						


Sound: Myanmai Kori International Ltd.

Source: Myanmar Koei International Ltd.

Figure 2.4-1 Results of Noise Levels (LA_{rq}) Monitoring at NV-1

Source: Myanmar Koei International Ltd.

Figure 2.4-2 Results of Noise Levels (LAeq) Monitoring at NV-2

Vibration Monitoring Results

Vibration monitoring results are separated as daytime (7:00 AM to 7:00 PM), evening time (7:00 PM to 10:00 PM) and night time (10:00 PM to 7:00 AM) time frames respectively for both NV-1 and NV-2. Vibration measurement was carried out for 8-hour as working time (8:00 AM to 4:00 PM) at the designated one location instead of 24-hours due to the safety reason and risk avoidance. The results of vibration level (1-10) monitoring at NV-1 and NV-2 are shown in Table 2.4-5 and Table 2.4-6. Hourly vibration level (1-10) monitoring results at NV-1 and NV-2 are shown in Table 2.4-7 and Table 2.4-8. Figure 2.4-3 and Figure 2.4-4 showed the graph of vibration level monitoring results at NV-1 and NV-2. By comparing with the target vibration level in operation stage in EIA report for Thilawa SEZ development project Zone B, all of results were under the target values.

Table 2.4-5 Results of Vibration Levels (Lv10) Monitoring at NV-1

92 20 0 0000	10-200	(Office, commercial facilities and factories) Equivalent Vibration Level (L _{v10} , dB)				
Date	Day Time (7:00 AM - 7:00 PM)	Evening Time (7:00 PM - 10:00 PM)	Night Time (10:00 PM = 7:00 AM)			
6 June, 2023	39	31	128			
Target Value	70	65	65			

Note: Target value is applied to the vibration level during the operation stage in the EIA Report for Thilawa SEZ Development Project (belustrial Area of Zone B).

Source: Myunmar Loei International Lkl.

Table 2.4-6 Results of Vibration Levels (Low) Monitoring at NV-2.

	32/2/6	idential bouses and mona valent Vibration Level (L.	477600740
Date	Day Time (7:90 AM – 7:00 PM)	Evening Time (7:00 PM - 10:00 PM)	Night Time (10:00 PM - 7:00 AM)
5 June, 2023	22	\$	
Targei Value	65	60	60

Note: l'arget value is applied to the vibration level during the operation stage in the BIA Report for Thilawa SEZ Development Project (Industrial Area of Zone B).

Source: Myanma Koei International Ltd.

Table 2.4-7 Results of Hourly Vibration Levels (Lv10) Monitoring at NV-1

Date	Time	Result Lv10 (dB)	Each Category Lvit (dB)	Target Value	Remark		
	7:00-8:00	¥.					
	8:00-9:00	37					
	9:00-10:00	38].				
	10:00-11:00	39].				
	11:00-12:00	41]				
	12:00-13:00	40	39	70			
	13:00-14:00	39	39				
	14:00-15:00	41					
	15:00-16:00	40					
	16:00-17:00	+					
	17:00-18:00	20					
6 Toma 2022	18:00-19:00	*5			No construction Activitie		
6 June, 2023	19:00-20:00	+:		65			
	20:00-21:00	22	-24				
	21:00-22:00	*					
	22:00-23:00	7.5					
	23:00-24:00	+					
	24:00-1:00						
	1:00-2:00						
	2:00-3:00	23		65			
	3:00-4:00	+		4.5			
	4:00-5:00	- 51					
	5:00-6:00	-					
	6:00-7:00						

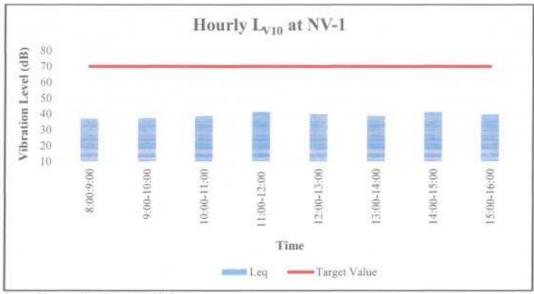
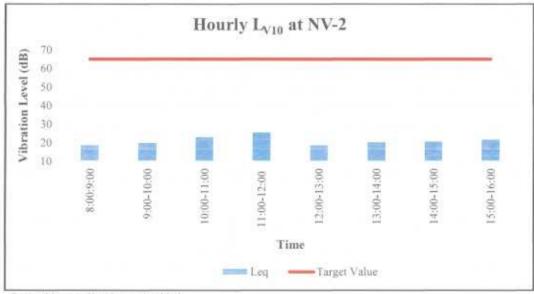

Source: Myanmar Koei International Ltd.

Table 2.4-8 Results of Hourly Vibration Levels ($L_{\nu 10}$) Monitoring at NV-2

Date	Time	Result L _{v10} (dB)	Each Category L _{v10} (dB)	Target Value	Remark
	7:00-8:00	-			V
	8:00:9:00	19			
	9:00-10:00	20			
	10:00-11:00	23			
	11:00-12:00	25			
	12:00-13:00	19	-22	165	
	13:00-14:00	20	22	65	
	14:00-15:00	21			
	15:00-16:00	22			
	16:00-17:00	-			
	17:00-18:00	- S			
F-10-10-10-10-10-10-10-10-10-10-10-10-10-	18:00-19:00	2			No construction Activitie
5 June, 2023	19:00-20:00	9		60	No construction Activitie
	20:00-21:00	-	20		
	21:00-22:00				
	22:00-23:00				
	23:00-24:00	2			
	24:00-1:00	F.			
	1:00-2:00	+:			
	2:00-3:00		53	60	
	3:00-4:00	-2	>=		
	4:00-5:00	- \$			
	5:00-6:00	-			
	6:00-7:00	-8			


Source: Myanmar Koei International Ltd.

Source: Myanmar Koei International Ltd.

Figure 2.4-3 Results of Vibration Levels (Lv10) Monitoring at NV-1

Source: Myanmar Koei International Ltd.

Figure 2.4-4 Results of Vibration Levels (Lv10) Monitoring at NV-2

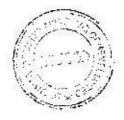
CHAPTER 3: CONCLUSION AND RECOMMENDATION

By Comparing with the target value of noise and vibration level in operation stage prescribed in EIA report for Thilawa SEZ development project Zone B, all results were under the target values except for NV-2 during day time. The results at NV-2 were higher than the target value for one hour (11:00 to 12:00) during the day time and there were no construction activities at that time. According to the field surveyor record, it was due to the heavy rain at that time. Therefore, it is considered that there is no impact from operation activities of Zone B to the surrounding environment. The results of vibration level for NV-1 and NV-2 were also lower than the targets levels. Thus, there is no negative impact on noise and vibration from operation activities of Zone B to the surrounding environment.

In conclusion of this environmental monitoring, there are no specific noise and vibration impacts to the surrounding area of industrial area of Thilawa SEZ Zone B during the monitoring period.

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3 (Operation phase)

Appendix-F


Traffic Volume Monitoring Report June 2023

TRAFFIC VOLUME MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA THILAWA SEZ ZONE B (PHASE 1, 2 & 3 OPERATION STAGE)

(BI-ANNUALLY MONITORING)

June 2023 Myanmar Koei International Ltd.

TABLE OF CONTENTS

CHAPT	ER 1: OUTLINES AND SUMMARY OF MONITORING PLAN	l
1.1	General	1
1.2	Outlines of Monitoring Plan	
	ER 2: TRAFFIC VOLUME MONITORING	
2.1	Monitoring Item	
2.2	Monitoring Location	3
2.3	Monitoring Method4	ļ
2.4	Monitoring Results	1
CHAPT	ER 3: CONCLUSION AND RECOMMENDATION6	
	LIST OF TABLES	
Table 1.	2-1 Outlines of Traffic Volume Monitoring	1
Table 2.	1-1 Monitoring Parameters for Traffic Volume	2
	1-2 Classification of Vehicles Types	
	4-1 Summary of Traffic Volume Recorded at TV-1	
Table 2.	4-2 Hourly Traffic Volume Results at TV-1 (From Phalan Village to Dagon-Thilawa Road) 5	5
Table 2.	4-3 Hourly Traffic Volume Results at TV-1 (From Dagon-Thilawa Road to Phalan Village) 5	,
	LIST OF FIGURES	
	.2-1 Location of Traffic Volume Monitoring Point	
Figure 2	2.3-1 Status of Traffic Volume Monitoring at TV-1	4

CHAPTER 1: OUTLINES AND SUMMARY OF MONITORING PLAN

1.1 General

Thilawa Special Economic Zone (TSEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd., (M.TTD) has a responsibility to carry out regular environmental monitoring in the industrial area of Zone B in accordance with the approved Environmental Impact Assessment (EIA) report with Environmental Management Plan (EMP). MJTD has implemented the monitoring for various environmental items with the specified time frame to know the environmental conditions in and around the area.

1.2 Outlines of Monitoring Plan

To assess the environmental condition under the operation of industrial area in and around Thilawa SEZ Zone B. Traffic volume monitoring was carried out for 8-hours as working time (8:00 to 16:00) at the designated one location instead of 24 hours due to the safety reason and risk avoidance. Traffic volume had been monitored on 6 June 2023 as follows:

Table 1.2-1 Outlines of Traffic Volume Monitoring

Monitoring Date	Monitoring Item	Parameter	Number of Point	Duration	Monitoring Methodology
6 June 2023	Traffic Volume		(TV-I)	8 hours	Manual Count

Source: Myamman Keel International 14d.

CHAPTER 2: TRAFFIC VOLUME MONITORING

2.1 Monitoring Item

The traffic volume monitoring item are shown in Table 2.1-1. All vehicles were classified into four types as detailed in Table 2.1-2.

Table 2.1-1 Monitoring Parameters for Traffic Volume

No.	Item	Parameter
1	Traffic volume	Number of Vehicle (4 Types)

Source: Myanmar Koei International Ltd.

Table 2.1-2 Classification of Vehicles Types

No.	Classification		Description
1	Two-wheeled vehicle	6.3	Motorbike, Motorcycle taxí
2	Four-wheeled light vehicle		Pick-up car, Jeep, Taxi, Saloon car, Light truck (under 2 tons)
3	Heavy vehicle		Medium bus, Express, Big bus, Medium truck, Heavy truck such as 2 axles, 3 axles and more than 4 axles and Trailer (over 4.5 tons)
4	Others		Tractor

Source: Myanmar Koei International Ltd.

2.2 Monitoring Location

Traffic volume was recorded at the northeast corner of the Thilawa SEZ Zone B, monitoring point (TV-1); N: 16°40'17.90", E: 96°17'18.20". The location of the traffic volume survey monitoring is shown in Figure 2.2-1.

Source: Myanmar Koei International Ltd.

Figure 2.2-1 Location of Traffic Volume Monitoring Point

TV-1

TV-1 is located in front of main gate of operation site of Thilawa SEZ Zone B and next to Thilawa Development Road. The surrounding area are Zone A in the northwest and local industrial zone in the east respectively.

2.3 Monitoring Method

The traffic volume monitoring was conducted for 8 hours at the same time as the traffic noise and vibration level monitoring. Traffic volume monitoring was conducted to count the number of vehicles moving from Phalan village to Dagon-Thilawa Road and from Dagon-Thilawa Road to Phalan village in each direction. Manual count method was used and data was recorded using tally sheets. The status of the traffic volume monitoring at TV-1 is shown in Figure 2.3-1.

Source: Myanmar Koei International Ltd.

Figure 2.3-1 Status of Traffic Volume Monitoring at TV-1

2.4 Monitoring Results

The traffic volume monitoring results are summarized in Table 2.4-1. Hourly quantity of each type of vehicle were recorded. Table 2.4-1 shows that the number of 4-wheel light vehicles are distinctly and highly utilized in weekdays. The number of Heavy vehicle moving from Phalan village to Dagon-Thilawa Road is five times lower than the number of 4-wheel light vehicles and Heavy vehicle moving from Dagon-Thiawa Road to Phalan village is also four times lower than the number of 4-wheel light vehicles.

Table 2.4-1 Summary of Traffic Volume Recorded at TV-1

Survey Point	Direction	Date	Weekday	2-wheel Vehicles	4-wheel Light Vehicles	Heavy Vehicles	Others	Total
TV	Phalan village to Dagon- Thilawa road	Tuesday	289	668	133	1	1,091	
TV-1	Dagon-Thilawa road to Phalan village	6 June 2023	Tuesday	295	672	155	23	1,145

Source: Myanmar Koei International Ltd.

The summary monitoring results of hourly traffic volume at TV-1 is shown in Table 2.4-2 and Table 2.4-3 respectively. Comparing the result of each direction in the morning as 8:00 to 9:00, traffic volume from Dagon-Thilawa Road to Phalan village is higher than that of opposite direction. Similarly, in the afternoon as 15:00 to 16:00, traffic volume from Dagon-Thilawa Road to Phalan village is also higher than that of opposite direction. It may be possible commuting vehicles are moving from Dagon-Thilawa Road to Phalan village in the morning and afternoon during the monitoring period.

Table 2.4-2 Hourly Traffic Volume Results at TV-1 (From Phalan Village to Dagon-Thitawa Road)

Fram	Ţ	158 S S	Total			
From To	EU	Two-wheeled vehicle	Four-wheeled light vehicle	vehicles . Heavy vehicle	Others	I DEAL
8:00	9:00	3	79	5	1 "	87
9:00	10:00	60	104	9	0	173
10:00	11:00	53	81	21	0	155
\$1:00	12:00	38	1 93	15	Q 1	146
12:00	13:00	43	76	27	0	146
13:00	14:00	35	78	10	0	123
14:00	15:00	— ₂₉	85	32	0	146
15:00	16:00	2.9	72 7	[4	0	115
10	tal	289	668	133	30	1,4191

Source: Myanmar Koei International Ltd

Table 2.4-3 Hourly Traffic Volume Results at TV-1 (From Dagon-Thilawa Road to Phalan Village)

			Classii	Teation	3, 7,013, 93		
From To		Type of vehicles					
rrum	To	Two-wheeled vehicle	Four-wheeled light vehicle	Heavy vehicle	Others	Total	
8:00	9:00	55	90	13	7	165	
9:00	10:08	34	94	17	3	1.18	
10:00	11:00	41	105	18	4	148	
11:00	12:00	40	79	28	3	150	
12:00	13:00	29	80	23	9	132	
15:00	14:00	30	62	13	0 1	110	
14:00	15:00	29	78	19	5	130	
15:00	16:00	37	84	19	1 '	141	
Ta	lal	293	672	155	23 1	1,145	

Source: Myuninar Koei International Ltd.

CHAPTER 3: CONCLUSION AND RECOMMENDATION

The results of the traffic volume show that the number of 4-wheel light vehicles are distinctly and highly utilized in this monitoring period. The number of heavy vehicles is five times and four times significantly lower than the number of 4-wheel light vehicles for each direction. It seems that commuting vehicles are more utilized during this monitoring period as compared with construction related vehicles (Heavy vehicles).

The continuous monitoring will be necessary to grasp the traffic volume data in operation stage of Thilawa SEZ Zone B. Once enough traffic volume data is collected, the mitigation measures for traffic volume management will be considered in future.

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3(Operation phase)

Appendix-G

General Waste Disposal Record (March 2023 to August 2023)

MYANMAR JAPAN THILAWA DEVELOPMENT LIMITED

Solid Waste

Item	Date	Generated from	Unit	Value	Disposed to		
General Waste with Green Waste	14 March 2023	Landscaping and Plantation	Kg	2800	Waste disposing to Than Lynn Development Committee, Yangon Division		
General Waste with Green Waste	25 April 2023	Landscaping and Plantation	Kg	2850	Waste disposing to Than Lynn Development Committee, Yangon Division		
General Waste with Green Waste	30 May 2023	Landscaping and Plantation	Kg	2900	Waste disposing to Than Lyni Development Committee, Yangor Division		
General Waste with Green Waste	19 June 2023	Landscaping and Plantation	Kg	2950	Waste disposing to Than Lynr Development Committee, Yangor Division		
General Waste with Green Waste	31 August 2023	Landscaping and Plantation	Kg	2750	Waste disposing to Than Lyng Development Committee, Yangor Division		
	Total		Kg	14250	4Chana		
Sludge	7 March 2023	Sewage Treatment Plant	Kg	5380	Golden DOWA Eco-System Myanmar Co., Ltd		
Sludge	20 March 2023	Sewage Treatment Plant	Kg	6000	Golden DOWA Eco-System Myanmar Co., Ltd		
Sludge	20 April 2023	Sewage Treatment Plant	Kg	5820	Golden DOWA Eco-System Myanmar Co., Ltd		
Sludge	16 May 2023	Sewage Treatment Plant	Kg	5980	Golden DOWA Eco-System Myanma Co., Ltd		
Sludge	5 July 2023	Sewage Treatment Plant	Kg	6920	Golden DOWA Eco-System Myanma Co., Ltd		
Sludge	18 August 2023	Sewage Treatment Plant	Kg	6900	Golden DOWA Eco-System Myanmar Co., Ltd		
	Total		Kg	37000			

Remarks: Waste amount is not only in TSEZ-B but also combine with TSEZ-A General Waste. Generate wastes are dried waste and weight value are estimated base on type of Trash collector car. Green Waste (Grass cutting waste) are used in Bio-fertilizer.

Note: Zone-B wastewater treated at Sewage Treatment of TSEZ-A. Above data are sludge generated from Sewage treatment plant of TSEZ-A.

100 S	Service Servic	/oversice. Charges
130	တို့မှာ နေ့ပေါင်း(ဂဏန်း) ။ .55၀၇႙	
	on egeolisi(ooligis) n. F.H.y. Five Tro	usand kyats
19-3	(တွဲပြောင်းပေးသူ)	(-w66xg)
√Eng Page Maker/ Form-3	mas Kyry White Pryo	თ <u>ოგა</u>
Mak	ebalis	ရာထူး မှ- ဦးစီးမှုး(သန့်)
Pag	6890 1382	နေရာမြို့နယ်စည်ပင်သာယာရေးအဖွဲ့ သန်လျှင်မြို့
12	out . 14. Tarch. 2025	ရက်စွဲ

500 C	eggiele: oper all memobiosep i	o Sexuice Charges
A.C. S.	specific (non \$:) # . 5 5.90 0	
	on agaulti(oolgis) n. Fifity Five J	musand Kyats.
Form-3	(Seldstreets)	9990
VEng/Page Maker/Form-3	φρας:	ရာတူး

ငွေလွှဲပြောင်း/လက်ခံပြေစာ E. Paying For Dumping service Changes GeellEt(non\$t) 1 .55M? escolei(co[68) . Fifty Five. Thorsand . Kyats. 11.7.2023 D'Eng Page Maker Form-3 Kyon Hora . Chan. တမည် အမည် . Derick Aertoinde..... • • • စု-ဦးစီးမှုး(သန့်) ရာထူး မြို့နယ်စည်ပင်သာယာရေးအရွဲ့ .19E7.... 65.90 SERVE ရက်စွဲ gasp

ငွေလွှဲပြောင်း/လက်ခံပြေစာ laying. For Dumping. . Service . Changes ငွေပေါင်း(စာဖြင့်) ။ . Seventy Travaged . Kyats . . . 31.6.2023 (လွှဲပြောင်းပေးသူ) D/Eng/Page Maker/Form-3 Rycow. Write Plan. အမည် mupS Or Proposite eboot. - ဇှ- ဦးစီးမှုး(သန်) ရာဏ္: **ြို့နှ**လ်စည်ပင်သာယာရေးအ<u>ခွဲ</u> နေရာ 6660 . 61 - Aug . 8086 9058

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3 (Operation phase)

Appendix-H

Sewage Treatment Plant Monitoring Record March 2023 to August 2023

Daily Self Monitoring of STP Inlet, Outlet and Aeration

	Date		Thinks 62	one B)			Inia	Policies and Polic			Inte	1.2			Outi	4+1			Out	m +2:	
Monthly	47360	pH	TDS	Tom	C00	pH	TOS	Tem	000	per	105	Tam	000	pH	TDS	Ten	000	p#4	TDS	Tem	000
Star	ndard	0 - 9:	2000	≤35	400	6.9	2000	≤36	400	6 - 9	2000	≤35	400	6 - 9	2000	635	125	6 - 9	2000	≤35	125
U	hill.		mg/L	C	mg/L	5.	mg/L	0	mg/L		mg/L	,c	mg/L		ing/L	.0	malt	- 4 -	1107.	10	Tons.
Mar	01-03-23	7.2	457.5	28.1		7.17	479.3	25.3 25.3	348	7.18	463.9	- 25.1	0.74	6.74	481.4	24.9	. 33	- 7	519:4	25	- 35
Mar	02.00.23	7.01	313.6	25.2	670	7.2	433.3	25.3		7.08	514.4	25.3	200	6.74	460,2	25.6		7.04	478.5	25.3	
Mar	03-03-23	7.26	339.4 301.8	27.5	179	7.19 8.76	515.2 522.6	25.9 24.3		7.12 6.88	468.B	25.6	219	6.67	450.9 448.2	26.2	72	7.07 6.92	472.1 470.6	26.5	27
Mae	06-03-23	7.26	296.9	26.8		7	410.4	-24.3		7.03	423.3	24.5		6.44	430.7	25.5		6.94	459.8	24.9	-
Mar	: 06-03-23	7.06	809.9	25.5	-	6.98	450.8	27.5	158	6.05	462.2	27.4	24	6.90	458.3	27.5	0	0.40	448.7	27.6	38
Mar	07-03-23	7.21	471.8	25.0	349	7.05	510	27.3	1.6	7.12	468.3	27.2	138	0.3	428.2	26.6	11	6.94	448.2	26.8	16
Mar	08-03-23	6.64	1013	26.7	198	7.16	400	26.1	219	7.28	46E	26.3	100	6.14	432.4	25.7	25	6.75	445.5	26.1	10
Mar	00-03-23	7.01	317.7	27.7	188	7.07	351	27.5	-	7.01	369.1	27.6	89	6.23	443.9	27.2	30	6.84	544.8	26.7	44
Mar	10-03-23	7.18	350.6	26.8	01	7.00	479.4 525.4	27.3	-	6.95	475.9 508.0	27.1	117	6.06 6.31	468.2	27.1	19	6.92	459,7 503.3	26.8 25.2	23
Mar	12-03-23	6.93	335.6	25.2		7.04	491.8	26 26	- 1	7.04	406.1	25.2		6.42	445.1	25.2		6.96	500.2	28	-
Mar	13-03-29	7.12	:307.8	26.0	+	6.89	452.0	75.9	100	7.07	339.2	25.7		6.64	466,9	24.9	.23	7.24	495.4	25.6	21
Mar	14-03-23	658	835.9	27 B	576	7.06	511.6	28.3		7.16	465.4	28.6	496	6.57	475.2	28.4	23 24		525.1	27.8	24
Mar	15-03-23	6.78	869.5	26.3	-	7.16	402	26.7	69	7:17	403.1	26.6	4.00	6.31	471.1	26.1	50	7.00	525.2	26.2	21
Mar	16-03-73	6.76	426 537.7	26.3	293	6.94	381.7	27.6		7.13	537.1	27.3	0.5	8.04	A55.7	27	16	6.80	503.5	27.1	24
Mar	17-03-23	7.18	127.4	26 23.6	112	6.99	539 366.7	24.2		6.94	540.2	24.6	.93	7,05 6.88	457.9	24.7	25	6.74 7.03	905.5	23.0	55
Mar	19-03-23	7.11	325	28		7.14	388.1	243		7.2	386.2	24.1		6.56	428.7	24.3		7.22	674.7	24.4	
Min	20-03-23	7.47	311.4	27.3		7.02	366.1	25-3	544	7.5	300.3	25.6		6.6	422,8	25:0	43	7.10	485.4	25.1	В.
Mar	21-03-27	7.29	359.9	27.9	111	7.32	428.9	26.4		7.15	437.1	28.1		6.42	427.2	28.8	. 22	7.06	458.9	28.7	10
Mat	22-03-23	7.27	8.081	27.8		1.12	379.2	27.5	.77.	6.76	545.8	27.3		6.76	548.8	27.2	21	7.09	408.6	27.3	2
Mai	23-00-22	7.14	456	77.8	384	7.04	511.1	25.6	_	6.98	549.8	26.5	201	6.45	482	25.9	20	7.12	491.8	25.7	35
Mar	25-03-23	7.01	390-0 468.4	26.8	193	7.15	517.5 401.6	25.8		7:07 6:92	588.2	25.5 23.6	583	6.38	480.2	25.3 22.8	27	7.18	497.4 516.6	25.4	. 66
Mar	26-03-23	6.74	382.5	24.3		6.9	590.5	74.4		7.11	677.3	24.4		6.37	475.9	28.1		7.06	502.1	23.3	-
Mar	27-03-23	7.21	380.7	24.1	-	6.88	412	23.0	1.0	6.91	590.4	23.9	7.	6.47	461	23.9		7.04	500.2	23.6	-
Mar	28-03-23	7.44	332.7	26.4	171	6.0	323.3	28.2	18.1	6.93	388.1	28.4	386	6.48	467.9	28.5	9	7.03	519.5	28.2	16
Mar	29-03-23	7.3	526.1	20.1		3	489.5	22.8	56	6.99	456.4	22.7		6.42	458.2	22.7	8	7.17	524.6	23	18
Mar	30-03-23	7.01	727.1	26.6	631	7.06	510.8	25.3		7.12	512.1	25.6	270	6.38	478.6	25.3	22	6.93	500	25.7	17
Apr	31-03-23	7.12 6.97	276.8	26.9 23.1	172	6.99	4919	26.3	17	7.03	437.6	26.1 432.6	276	6.56	438.6	26.6	24	7.13	437.4 426.6	20.7	25
Apr	02-04-23	7.22	253.6	24.3		8.97	382.5	78.2		7.01	519.0	23.9		6.48	438.6	22.7		0.97	448	22.4	-
Apr	03-04-23	7.43	286.4	26.6		6.98	445.7	25.4	55	7.01	437.1	25.4		6.35	441.3	26.3	10	7.03	453.0	25.3	10
Apr	04-04-23	7.02	426.1	25.3	354	6.95	461.7	25.5	-	7.07	864.3	25.2	72	6.08	424.9	26.2	21	6.89	469.3	29.5	10
Apr	05-04-27	6.60	457.8	22.0	77	7.06	485.1	24	298	7.3	458.2	22.0		6.26	425	23.7	14	7.01	435.9	23.3	- 13
Apr	06-01-27	7.01	374.2	23.6	308	7.00	5192	23.4		6.63	720.8	23.6	110	6.3	438.1	23.4	53	6.86	453.3	23.0	- 10
Apr	07-04-23	7.42	345	747	297	7.37	027.3	24.1	_	0.86	882.6	23.4	490	6.49	454.5	23.7	30	7.04	483.7	23.6	20
Apr.	08-04-27	7.00	223.3 268.5	23.1		7.03	452.3 577.3	29.1		6.92	448 501.4	23	-	6.02	499.3	22.8	-	6.95	513.3	22.8	-
Apr	10-04-23	7.03	544.5	22.6		0.94	295.5	22.7		6.75	293.4	22.8		6.01	491.7	22.5		7.23	565.7	22.4	1
Apr	11-04-23	7.21	147.1	23	7	2.27	549.0	23		7.03	344.9	23.1		6.03	488	22.8	-	7.19	461.1	22.0	
Apr -	12-04-23	7.88	329.2	23.9	-	6.54	333.6	23.3		6.64	219.3	23.3	1.4.5	6.04	494	23.4		7.01	436.1	23.5	-
Apr	13-14-23	7.32	344.8	23.3		6.94	444 1	23.3	-	6.93	400.4	23.4	72	Tank cleaning		A.,		7.09	441	23.9	
Apr	14-04-23	7.21	316.9	23.5	-	7.27	313.9	23.4	-	8.31	474.6	23.8	-	6.31	474.6	23.8		7.09	428 d	24	7
Apr	16-04-23	7.47	261.6	22.8	-	7.36	371.4 265.6	23.8	-	7.09	383.3 191.7	23.1	1.7	6.55	450.7 400.7	24.1	1-	7.01	437	28.4	-
Apr	17-04-23	7.42	268	23.4		6.97	205.8	22.8		7.37	434.7	23.9		6.56	357.3	23.6		7.02	430.4	24	100
Apr	18-04-23	7.84	258.3	23.4	96	7.11	239	23.6		7.12	217.9	23.9	133	7.01	428.6	23.4	17	6.61	291.8	23.0	14
Apr	19-04-22	7.34	349.9	25.5		7.06	532.7	29.1	407	7.48	527/9	28	-	.0.34	280	27.8	10	6.07	396.8	28.2	29
Apr	20-04-23	7.21	305	29.4	262	7.16	360	26.4	77	2.15	417.3	20.2	1.0	0.7	362.8	26.6	34	6,94	406.6	26.5	14
Apr	21-04-23	7.11	346.8	29.4	263	6.90	533.9	27.0	-	7.06	483.9	27.9	281	0.04	395.6	27.5	21	0.07	459,3	27.4	- 20
Apr	22:04:23	7.10	347.8	23.3	- 17	6.92	351.5 619.0	22.7		0.85	4/(d.)* 615.1	22.8		6.05 7.15	420.9	22.3	-	6.93	454.6	22.6	-
Apr .	24-04-23	7.31	386.1	24.1		7.03	562.4	23.5 26.9	128	7.08	567.1	26.1	-	6.02	475	28.6	16	7.10 7.18	476 536.4	23.6	18
Apr	25-04-23	6.8	645.7	20.7	404	11.00	332.7	24.8	- tree	6.00	370.4	15.4	72	6.91	542.3	24.9	26	7.53	517.2	24.1	17
Apr	26-04-23	6.85	522.3	28.5	7	7.09	363.1	25.7	89	6.72	427.5	25.1	1	6.77	460.7	25.6	39	6.85	495.8	26	19
Apr.	27-04-23	6.98	362.4	24.8	877	7.02	465.7	21.8		8.85	637.6	21.5	382	6.89	486.6	22.1	38	6.84	500.7	21.8	31
,0 ₍₂₎	28-04-23	6.95	327.7	25.4	338	1.23	560.7	28.3	-	7.2	559.7	29.4	285	7.18	511.3	29.5	51	7.04	565.4	29.1	30
Aur	29-04-23	7.03	319.6	217	-	0.98 2.95	492.3 423.6	21.6	-	6.73	581.7	21.6	4	7.02	539.4 536.4	21.7	-63	7.03	577.3	21.7	

Daily Self Monitoring of STP Inlet, Outlet and Aeration

Monthly	Date		Inlet (2	(one B)			Inle	6-1			inie	t-Z			Out	st-1		Leus1	Out	int - 2	
monany	Date	pH	TOS	Tem	C00	рН	TDS	Tem	COD	pH	TDS	Tem	cop	pH	TDS	Tem	COD	pH	TDS	Tem	coo
Sta	ndard	6 - 9	2000	≤35	400	6-9	2000	€35	400	6-9	2000	≤35	400	6.9	2000	s35	125	6-9	2000	s35	125
	Init	70	mg/L	,c	mg/L	- 63	mg/L	C	mg/L	1.00	mg/L	C	mg/L		mg/L	*C	mg/L	100	mg/L	iiC	mg/L
May	01-05-23	7.32	255.7	21.7		7.18	498.9	21.8	-	7.6	588.1	21.7		6.88	538.2	21.8		6.86	589.8	21.6	1100
May	02-05-23	7.21	1168	21.7	105	6.82	433	21.8	-	6.83	430	21.6	68	6.67	545.8	21.6	17	6.66	561.6	21.6	26
May	03-05-23	7.02	295.9 346.5	25.4	123	6.91 7.77	403.4 537	22.5 25.2	-	7.02	443.6	22.3	1000	6.72	551.8	22.3		6.76	528.3	22.4	7.4
May	05-05-23	7.54	367.7	24.6	96	7.82	579.8	24.1		7.15	645.3	24.1	143	5.36	545	26.3	16	6.82	520.7	26 24	25 24
May	06-05-23	7.51	363	24.7		7.06	545.8	24.5		7.14	523.7	24.4		6.76	507.4	23.8	14	7.19	508.4	24.4	29
May	07-05-23	7.31	344.6	24.6	-	7.07	416.3	24.3	- 27.9	6.71	416	24.2	-	5.94	496.3	24.1		7.09	488.5	24.1	-
May	08-85-23	7.36	457 549.7	26.3	472	7.98	640.5 592.2	26.8 27.8	79	8.03 7.4	637.9 458.2	28.6 27	138	7.11	499,6	26.8	17	7.2	514.2	26.3	12
May	10-05-23	7.26	330	27.9	1412	6.89	467.6	27.7	341	7.31	505.3	27.6	138	6.94 7.06	487.3 469.9	26.1	13 25	7.2	486.7 490.7	25.7	10
May	11-05-23	7.45	336.4	24.9	297	7.19	503	24.3	201	7.21	498.1	24.2	245	6.96	439.1	24.6	22	7.34	466.2	24.3	30
May	12-05-23	732	342.9	27.0	193	7.18	372.9	27.8		7.15	373	27.7	108	7.06	418.5	27.7	23	7.22	446.9	27.6	13
May May	13-05-23	7.1B	289.8	24.7		7:23	348.8	24.6		7.25	347.7	24.7		6.93	407.4	24.5		7.3	423.3	24.7	1
May	15-05-23	7.37 7.38	251 347.3	24.5		7.01	188.5 356.4	24.7	81	7.06	358.8	24.7		6.88	393.2	24.6	31	7.03	420.8	24.7	- 5
May	16-05-23	7.39	410.4	25	335	7.13	412.8	26.9	- 0.1	7.18	425	26.2	90	7.2	364.6	26.5	15	7.06	366.4	26.1	31 26
May	17-05-23	7.27	258.4	27.2		7.64	258.4	28.1	50	7.31	377.9	27.8	35	8.99	376.4	27	35	7.25	411.4	27.7	31
May	18-05-23	0.05	357.9	26.8	278	6.93	357.4	23.3		6.96	359.9	23.9	212	7.04	386.7	24	.38	7.24	403.2	23.4	50
May May	19-05-23	7.14	963 317.9	24.4	628	6.98 7.16	376-6	25.8	-	7.11	417.5	25.4	150	7.1	405.2	25.6	27	7.11	407.4	24.7	47
May	21-06-23	7.19	585.4	23.8		6.98	362.7 386.4	23.8	-	7.11 6.93	365.1 391.2	23.7	- :	7.23	431.9	23.6		7.15	487.1	23.7	-
May	22-05-23	7.29	485.7	27	78.0	7.13	361.5	25.4	105	7.17	366.1	25.5	-	7.41	446	25.9	26	7.4	508.9	26.1	31
May	23-05-23	7.22	458.7	27.3	238	6.99	404.9	24.9	1.0	7.02	444.8	25.1	414	7.23	466	24.5	-37	7.19	488.8	24.6	34
May	24-05-23	7.06	280.1	25.1	320	7.1	502.9	25.8	125	7.11	490.6	25.5	4	7.22	461	25.4	49	7.28	502	25.4	41
May May	25-05-23 26-05-23	7.3	275.6 306.5	26.6	177	7.74	474.4 366.7	29.2		7.29	267.3	28.4	310	7.28	430.7	29	47	7.22	494.6	28.9	61
May	27-06-23	6.61	285.6	24.2	30	7.02	506.4	24.3		7.31	255.3 501.1	26.9	127	7.27	436.1	26	- 54	7.25	438.9	26.1	60
May	28-05-23	7:35	299.4	24.7	11 12	7.05	425.9	24.2		7.16	306	24.7		7.16	474.3	24.8	-	7.28	496.8 515.8	24.7	-
May	29-05-23	7.27	254.6	26.9		7:	343.5	27.4	50	7.02	335.1	27.2		7.51	508	27.3	13:	7.38	495.9	27.6	17
May	30-05-23	7.36	310.4	26.6	201	7.64	410.4	26.7	100	7.61	408.2	26.5	368	7.36	464.5	26.8	18	7.23	432.2	28.5	15
May June	31-06-23 01-06-23	7.19	483.7 381	26.8	167	7.08	207.5	27.4 28.1	291	7.15	421.3	27.3	329	7.32	439.6	27.1	14.	7:25	406	27.1	-14
June	02-06-23	7.34	333.1	27.2	146	7.45	329.1	27.8		7.05	376.6	28.1	54	7.32	422.3 392.6	28.2	15	7.24	479.9	29.2	16.
June	03-06-23	. 7	316.6	24.4	140	6.94	283.1	24.5		7.19	348.1	24.6		7.26	351.6	24.3	- 10	7.2	460.4	24.3	- 11
June	04-06-23	7.17	282.6	24.5	172	7.36	326.3	24.7		7.15	1.506	24.7		7.21	337:3	24.7		7.25	413	24.7	-
June	05-06-23	7.23	239.8	27.6	15.	6.93	285.8	28.7	376	6.95	286.5	28.2	V. 10	7.22	316.5	28.1	.23	7.3	397.2	28	21
June	06-06-23	7.19	319.4	25.2 26.3	133	6.94 7.04	290.7 416.1	26.6	152	7.06 8.99	337.4 404	25.7 26.6	106	7.13	301.6	26.6	16	7.08 7.28	384.7	25.7	27
Ame	08-06-23	6.98	341.6	22	288	7.08	320	22.2	Hos.	7.12	317.5	22.6	80	7.18	328	26.9 22.8	32	7.22	362.5 372.2	26.5 22.5	23
June	09-06-23	7.12	351.3	27.9	253	7.31	191.1	27.6		0.85	358.2	22.0 27.5	132	7.16	330:3	27.6	31	7.09	392.2	27.2	98
June	10-06-23	6.73	369.7	25,2		6.84	208.2	24.E		6.72	396.2	24.6		6.94	420 1	25		7.11	345.7	24.2	-
June	12-06-23	6.89	276.8 180.5	24.2		7.24 6.84	234.2	24.1	7	6.84	253.9	24.1		7.02	327.8	24.1	7	7.16	335.8	24.2	7707
June	13-06-23	6.92	264.5	26.5	374	6.84	196.9	24.1	27	6.81	218.7	24.7	80	6.99	277.6	25.4	20 49	7.11 6.85	316.7	26.5	66
Janu .	14-06-23	7.11	445.4	24.8	+	6.88	319.4	24.6	42	6.96	306.6	26.2		6.98	228	25.4	18	6.86	323.5	26.0	32
June	15-06-23	7.1	376.8	26	23†	-7.4	136.6	25	-	6.02	323.8	25.2	106	7.13	356.7	26.3	25	7.02	337	26.4	33
June:	16-06-23	72	316.8	27.2	223	6.73	294.7	24.4		6.72	275.2	24.6	55	6.81	295	25.2	21	6.96	351.1	24.6	41
Arie Arie	17-06-23 18-06-23	0.84 8.95	343.9 194.2	25.2 25	-	6.81 7.18	310.9 126.9	25.3 25.1		6.7	528.4 396.8	25.3 25.1	-	6.84	258.8	26.1	- 2	6.81	261.3	25.4	- 1
June	19-06-23	7.29	347.7	26	14.	7.74	126.9	25.5	198	7.3	119.4	25.4	7.4	6.93	266.6	25.9	28	7.05	321	25.9	32
June	20-06-23	7.23	270.5	25.2	36	6.64	217.1	26.3	14	6.86	269.9	25.8	63	6.88	276.9	24.4	39	7.22	339.7	24.4	54
June	21-06-23	7.21	332.6	25.6	100	7.27	110.9	25.9	.51	7.13	345.2	26.2	4	5.78	332.3	26.8	7	7.05	261.1	26.2	34
June:	22-06-23	7.31	284	26.9	.73 138	7.34	302.4 417.3	24.4		7	303.9	24	75	6.78	224	24.3	18	7.13	347.1	24.1	45
Arre Arre	24-08-23	7.09	286.5	23.5	136	6.68	157.5	27.5	-	6.98	354.9 159	27.5	33	6.99	224.5 335.6	27.4	- 11	6.95 7.1	407.7 354	27.1	50
June	25-05-23	7.16	233.5	23.8		7.01	138.3	23.9		6.76	181.4	22.6	-	7.08	250.5	23.6	- 4	7.11	249.3	23.5	-
June.	26-06-23	7.29	280.3	25		6.63	149.3	26	24	6.54	148.4	25.3		7.12	167.6	24.9	31	7.15	212.0	24.0	49
June	27-06-23	7.06	273	26.1	137	6.75	244.6	27.8		0.73	232.5	27.8	106	7	188.3	28	23	7.81	226	27.4	30
June	28-08-23	7.04 6.85	313.3 500.7	24.8	-	6.82	236,7	25.3	29	6.81	233.7	24.5	- 1	6.91	212.1	23.9	31	6.98	278.6	24.8	33
Ane Ane	30-06-23	6.86	488.8	23.9	436	8.17 6.86	136.1 296.5	28.1	-	7.08	196.19 566.7	27.8	27	7.06	343.4 234.8	26.1	11	7.00 6.09	342.7	24.8	21

Daily Self Monitoring of STP Inset, Outlet and Aeration

Monthly	Date		Inlet (2	one B)			Jule	t _e 1			linte	t-2		71 11 12	Outli	et est			Outl	H-2	
1920117041	5000	pH	TOS	Teim	000	pH /	TDS	Tem	COD	piHi	TD5	Tem.	con	pH	tos	Term	000	pH	TOS	Tem	COD
	ndard:	6 - 9	2600	≤35	400	6 - 9	2000	s:35	400	6 - 8	2000	≤35	400	6 - 9	2000	≤35	125	6-11	2000	≤38	125
1117	hitt.	- 1	mgit	C	nig/L	A	mg/L	20	itig/L		mg/L_	C	mg/L		mg/L	TIC.	mg/L	-4	mgrL	· c	mg/L
July	01:07:23	6.86	336.2	24.4		7.02	763.1	24.6		6.92	919.1	24.6		0.9	248 6	29.4		6.94	8.505	24.6	
July	03-07-23	7.34	349.5	26.8		6.07	109.6	26.5	132	7.01	256,7 310,8	25.2 26.h		6.67	279.2	25.8	-	7.04	386.9	25.5	
July	04-07-23	7.4	306	20.4	35	7.03	105.9	27	11/25	6.81	267	26.6	72	6.96	245.7	26.8	42	7,03 6,99	365.8 355.7	26.8	12
July:	00-07-23	7.29	261.5	35.9		0.83	377.7	27	- 51	6.77	226.7	26.5		6.6	228	26 1	27	0.75	229.1	26.6	30
July	06-07-23	7.18	247.4	25.1	:31	6.87.	333.0	25.3		0.94	325.7	25	89.	6.85	209.7	24.6	20	6.87	277.5	24.7	25
July	07-07-23	7.14	263 280:3	265	81	7.05	523.1	25.3	-	7.14	574.9	75	7.4	6.9	396.1	25.1	10	0.02	264.7	24.7	28
July	09:07-23	7.19	243.1	23.3		6.75	70.8 288.7	23.5		7:00 6:89	370	23.7		6.65	234.2 320.1	23.8	-	6.71	233.6	23.9	
Skey	10-07-23	7.08	292.4	2.0		6.93	296.4	28.6		7.3	330.8	26.1	_	6.91	265.9	29.1	-	6.77	307.6	23.8	-
July	11-07-23	7.09	304.8	26.1		6.82	263	24.2		6.85	250.3	23.9		6.89	273.3	24.1		6.76	323.1	24	
July	12-07-23	7.49	338.4	26.6	100	7:01	90.54	26.7	19	7.13	87.83	26.7		6.78	288.6	27.1	0	11.86	361.6	27.1	22.
duly	13-07-23	7.44	373.9 345.2	26.1	128.	7	305.4	28.1		6.97	400:2	28.9	163	6.79	290	28.6	10	0.0	258.3	26.3	24
July	15-07-23	6.90	419.7	24.8	118	8-6 7-01	243.3 83.77	25.5		6.85	737	24.0	87	7.14	290.7	24.7	17	0.89	341.1	24.7	- 22
July	16-07-23	7.32	271.4	23.6		7.02	286.1	26 fi 23.5		7.08	365.7	27.1	- 1	0.09	352.7 235.3	20.0	-	7.1 F.16	357.5 341.6	26 ft 23-7	-
July	17-07-23	7.46	329.9	24.3		7.07	247.1	24.7	200	7.01	232.7	25	-	6.94	200.8	24.7	72	7.10.	271.1	24.0	26
July	18-07-23	7.19	212.4	25.5	77	6.9	329.2	26		7	402.5	25.0	288	7.1	340.3	25.0	12	6.99	251.7	25.8	20 32
July	19-07-23	7.21	203.5	24.5		6.86	212.6	24.7	-	6.74	200.2	24.7	4	6.70	225.4	24.6		8.87	276.#	24.0	
July	21-07-23	7.13	210.9	27.4	31 53	6.78	193.7	27.9 27.5	-	7.15	172.2	28	67	6.97	197.2	27.9	18	0.07	262.2	27.1	17
July	22-07-23	7.16	261.8	24.1	-94	5.74	213.6	24.3	-	0.8	221.9	26.9	38	E.85 6.05	221 I 216 I	28.U 23.6	22	6.88	744.2	27.4	31
July	23-07-23	7.32	264.2	23.8	70	6.73	209.B	23.8		6.74	200.7	23.9		0.00	224.8	23.7		6.96	276.9	23.9	- 00
July	24.07-23	7.36	345.3	27.1		6.7	239.2	27.1	49	6.82	230.2	26.8		6.89	230.7	26.3	10	0.91	276.1	26.4	- 22
July	25-07-23	7.12	372.9	25.4	266	7.09	419.1	25.3	-	7.11	358	25.7	50.	6.84	286.8	24.8	10	6.83	280.9	25	11
July	26-07-23	7.52	353.1	27.9	122	7.38	378.1	28.4		7.5	375	27.5		0.80	312.7	27.7	100	0.93	341.2	28.2	
July	28-07-23	122	235.4	25.2	68 71	7.05	425.8 C/4.4	25.6 25.5	-	7.14 6.92	543.9 171.4	28 B	171	6.9	296.3	24.8	17	7.08	353.3	24.0	22
July	29-07-23	6.64	642.8	24.1		673	759.5	24.1		6.75	260.3	24	- 34	6.68	279.2 219.9	24 1	. 27	7.09 6.82	337.1	24.1	20
July	30-07-23	6.78	358.6	27		6.76	208.5	27.1		0.70	250.7	27.3	-	6.82	224.6	27.1		0.88	263.5	26.0	-
July.	31-07-23	6.82	237.4	24.7	1 -	8.71	141.6	24.7		8.71	141.8	24.0	+ 1	6.97	196.1	24.7	18	6.90	240	24.7	17
Aug.	02-08-23	6.07	194.5	24.4	-	6.7	135	24.4	100	6.69	136.5	24.4	47	0.27	133.3	24.1		6.79	142.9	24.4	
Aug Aug	03-08-23	7.03	206.6 229.6	26.3	26	6.91	137.6	26.0	52	8.87 7.05	105.1	26.8		6.02	147.0	26.5	17	7.02	177.3	20.7	12
Aug	04-08-23	7.3	285.8	26.9	110	6.96	199.2	26.7		6.05	199.6 250.6	29.8	33	7.37.	187.68: 190.1	26.0	16	7.08	229.9	27	14
Ace	06-08-23	7.36	123.7	29.1	11.19	6.63	171:0	24.9		6.84	171.1	25	- 91	8.97	245	26 3 25	-	7,02 6,96	254 265	25.2 24.8	24
Aug	06-08-23	0.62	327.2	25		6.82	103.3	25.1	1	6.74	196	24.4		6.70	243.6	26.1	-	7.07	260.4	24.0	
Aug	07-08-23	7.33	199.4	26.7		0.89	190	- 27.1	34	7.05	187.5	27.1		7.06	244.3	26.0	22 16	8.99	206.4	22.1	26
Aug	08-08-23 09-08-23	7.31	281.5	27.9	50	7.2	334.3	27	1105	7.24	325.4	27	30	6.98	264.9	27.5	10.	7.03	257.2	27.4	17
Aug	(0.08-23	1.22	295.4	26.0	47	6.94	250.1	26.0 27.6	118	7.06 6.83	375.4 251.4	27.1	- 1	7.04	266.1	27	26	7.02	279.8	26.0	54
Aug	11-08-23	7.16	232.3	27.5	42	5.86	274	27		7.03	3137	27.H 26.B	75	7.26 6.96	269.2	27.1	12	6.89	266 ≘	27.3	26
Aug	12-08-23	7.01	215.1	23.9	7	6.74	280	23.7		6.76	282.9	23.0		6.87	214.4	23.8	- 10	0.63	235.3	27.1	38
Aug	13-08-23	7.03	224.7	23.6		6.73	183.7	23.8	100	6.76	184.3	23.8	-	6.86	237.8	24.1		6.79	291.5	24	
Aug	14-08-23	7.24	185-2	27.2	1.5	6.92	202.2	27.4	41	6.89	297.1	27.5		6.84	351.B	28.1	12:	6.89	280.1	27.6	31
Aug Aug	15-08-23	7.14	247.8 427.6	25.3	.50	8.85	200.3	26.2	40	6.64	210.2	28.4	166	6.9	243.4	26.1	10	0.91	201	26.2	31 38 27
Aug	17-138-23	6.88	786.1	25.3	295	6.82	268.8	24.9	46	6.91	345.2 200.8	26 24.0	- 21	6.64	264.1 388.7	25.1 35.1	21	6.97	309.6	24.6	- 27
Aug	18-08-23	7.16	- 246.1	25.9	500	0.97	1114.6	24.6		6.85	186.7	24.4	- 34	0.7	297.2	24.2	8:	0.61	310.3	25.3 24.9	34
Aug	19-08-23	0.82	448.2	25.1		6.68	201.5	25.7		6.69	343	.28.1	4.	6.68	284.4	26.2		6.74	203.1	25.3	
Aid	20.08-23	7.01	1883	283	- 6	6.6	222.0	26.2	-	6-61	222.0	28.1		0.7	257.1	25.E		6.70	260.6	25.5	
Aug	21-08-23 22-08-23	7.14 7.14	194.9 208.3	24.7	149	8.66	220.2	28.1	210	6.84	223.6	28.5	- 62	6.87	246.2	28.9	- 2	8.0	250.5	20.5	1.
Aug	23-08-23	7.01	219.8	25	52	0.84 6.83	192	26.1	139	6.86 6.85	260.2	26 S	27:	0.72	260.1	26	19	7.1	266.9	25.R	8
Aug	24-08-23	7.11	205	26.3	326	6.8	(82.2	26.5	139	6.86	176.5	26.6	81	6.52	268.3	26.1	21	0.63	277 9 222 6	28.5	38
A4G	25-08-23	0.94	226.1	26.7	48	6.96	177.6	26.4	1	6.95	200.3	26.2	- 66	11.75	184.9	25.8	165	6.74	228.6	25.9	20
Ave:	26-08-23	7.02	202	23.9		6.65	198	23.9	-	6.85	204	24		fi.B4	163.2	23.9	- 11	0.88	162.8	22.9	
Aug	27-08-23	7.04	181.5	24.2		0.06	121.7	24.7	1.50	0.63	170.5	24.2		6.85	161.6	24.2	0.00	6.89	152.6	24.7	
Aug	28-08-23	7.1 6.88	152.5	26.8	- 10	6.74	17B.3	27.8	340	6:65	173.6	27.4	+	6.96	178.5	27.4	- 1	6.97	168.1	27.6	3
Aug. Aug.	30-08-23	7.33	264	26.2 28.4	30	6.92	386.6	- 28.5 27.5	061	6.72	193.4	26.3	39	6.96	191.8	26.0	9	8.94	101.3	26.4	10
Aug	31-08-23	7.36	265.2	25.4	70	6.87	206	25.9	.061	7.04	260.2	25.1	327	8.82	183.2 205.9	27.1	12	6.78	217.7	27.3	18

Weekly STP Water Analysis Results

		Zone A	(Intet) -1		Zone A	(Inlet) -2		1000				Outlet - 1				S			0	Junet - 2	Part and		
Month	Date	55	800	T-P	55	800	T-P	SS	BOD	T-N	T-P	080	T-Goli	E-Coli	Free Chlorine	5.5	800	TAN	T-P	O&G	T-Goli	E-Coli	Free Chiorine
88	inmand .	Max 200	Max 200	Maxib	Max 200	Max 200	Маха	Max 50	Max 30	Max.00	Max 2	Max: 10	Max 400	Max 1000	Max 1	Max 50.	Max 30	Max 80	Max 2	Min: 10	Max 400	Max 1900	Max t
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	-ppm	ppm	ppm	ppm	ppm	MNP/100ml	MNPMOOM	mg/L	ppm	ppm	ppm	ppm	ppto	MNP/100ml	MNP/100ml	mg8.
Mar	01-03-23	:50	363	3.08	1.40	54		- 72	9	20.	1.53	0	1	1	0.06	2	8.7	16	1.97	0	€1.	<1	0.36
Mar	07-03-23				40	347	2.34	2	2.5	- 21	1.44	0.1	1	1	0.02	- 4	- 6	3.5	2.02	- 0	€1	<1	0.05
Mar	15-03-23	10	126	3.58				.4	8.3	18	1.98	1.2	<1.	<1	0.17	6	7.6	6	2.46	0.1	s1.	4.1	0.53
Mar	29-3-23		- 1		40	117	3.02	18	9.2	10	2.05	0.6	1	1	0.01	2	6.9	17	3.02	0.2	61	€1.	0.77
Mar	29-3-23	20	308	1.31	-			3	8.2	36	1.58	0	105	105	0.03	16	11.4	5	1.88	0.6	1	<1	0.1
Apr	05-04-23	Fig.	10.5	111	10	365	2,24:	- 3	6.5	17	1.75	0.1	20	20	0.02	(2)	5.8	9	2.24	0	61	€1	0.05
Apr	20-4-23	100	435	1.65		- 0	3	7	10	12	1.19	0.2	33	28	0.01	3	8.1	- 11	1.44	0.2	< 2	-61	0.71
Apr	25-4-23	- 0.00		+	20	96	1.72	- 6	8.7	12	1.55	0.	<1:	c)	0.27	3	6.7	1	1.67	0	63	c1	0.56
May	05-05-23	10	-:911	1.93					8.6	22	1.47	0	<1	<1	0.01	- 1	7.3	- 11	1.53	U.	<1	<1	0.02
May	09-05-23	-			44	341	1.25	10	1.8	11	1.4	0.2	<1	<1	0.01	7	6.7	6	1.54	0	<1	<1	0.06
May	17-05-23	.10	138	1.75	-61	-		- 7	8.5	17	1.26	0.5	<1	<1::	0:14		3.3	1.0	1.54	0.2	< 3	<1	0.33
May	24-05-23		5	- 4	30	165	1.22	7	1.4	16	1.31	0.2	- 5	- 3	10.01	-15	8.5	- 14	1.54	0.1	<1	<1	0.56
Jun	01-06-23	:40	162	1.74	2.6	377	111111111111111111111111111111111111111	1.9	10	11	1.26	0.1	1	<1	0.03	13.	9.8	11.	1.57	0.0	e 3	×1.	0.61
Jun	07-06-23	-			50	156	1.31	9	9.8	11	1.17	0.2	<1	<1.	0.11	5	7.8	- 8	1.41	0.2	<1	<1	0.47
Jus	14-06-23	20	117	0.627				7	8.4	11	0,984	0.2	<1	<1	0.02	10	7.3	5	1.32	0.8	<2	<1	0.73
Von	20-06-23		1-1	9.5	27	131	1.01	.9	7.9	2	1.2	0.2	(41)	1	0.08	20.	8.4	1	1.33	0.7	e1	c)	0.83
Jun	27-06-23	8	87	1.09				- 6	7.5	12	0.965	0.4	<1	<1.	0.03	16	8.	14.	1.18	9.7	1	41	0.75
114	04-07-23	17	96	0.584	3.5			20	8.4	15	1.42	0.2	<1	×1	0.01	1.0	5.	10	1.49	0.2	*1	<1	0.36
July	12-07-23	100	1.2		20	153	1.73	3	10	20	1.14	0.2	41	<1.	0.04	10	8.5	18	1.6	0	<1	-1	0.28
July	20-07-23	-	-	-	13	153	1.24	- 8	12	9	7,903	0.3	<1	<1.	0.04	1.7	11	10	0.957	9.7	<1	<1	0.7
July	25-07-23	- 60	334	0.836	100	141		3	6.6	12	0.752	0	*1	<1.	0.03	10	6.5	9	1.15	0:	<1	€1	0.03
Aug	03-08-23				20	135	8.509	12	12	1	0.837	0.2	51	- R.	0.23	9	11	2	0.897	0	«I.	61	0
Aug	08-08-23			- 25	-20	129	0.876	13	1.2	15	0.580	D	1	1	0.03	13	7.7	- 11	0.883	0.1	<1	<1	0.21
Aug	15-08-23	15	102	0.89	3.6.5	1.0	-	15	9.6	12.1	0.385	0.2	1	(4)	0.62	13-	10	7.1	1.38	0.1	<1	<1	0.18
Aug	22-08-23	27	105	2.44	47			- 2	7.5	7:1	0.579	0.1	-61	<1	0.14	3.	7.1	6.9	0.975	0.2	<1	€1.	1.25
Aug	30-08-23	20	141	2.83				3	8.6	8.9	0.478	0	25	20	0.05	-11	8.3	8.5	1.03	0.2	<1	61	0.19

Montoring Parameters Beneditor STP

					11.0	41.0	-								Street &	Steen St.							See a	Sec. of					_	11.00	COST					- 1	100		
here		-		100			==	-	-	-	-		140	-	=	i de la constante de la consta	-	-	-		Ann.	-	-	12	-			-	=	-			-			-		=	F
	100	1000	1000	See also	300	Sec. 1	(maxing	day.	ile e	March.	ALC: U	MARKET .	Mary.	No. 11	and a	- Marie		mate.	94.0	Charles .	- Bertel	Bill to	The same	None		man.	Part I	Market	Was T	Best	No. of Contract of	mare	The Park	Peter	Charles .	Description of	2012	Terror.	
	100			-						Del.	100		J. J. Hall L.	100	CHAN	100	1.00	1947	1996			100	1000	100		299	740	200	196	100	100	1100	100		100	7507	1997	7.89	
		-			100	-3.00					111																												_
35																									1.0	100				100		7730							-
-	-													110	10.00													7.00											
									- 11 11 -								1000					1000	1000		1000	100	0.000		3.000	100	100	7.74	-19	-		100			_
	_	_			_	_																100	1000		::::::::::::::::::::::::::::::::::::::		100	1000											П
		_		_			-			-				100	1000		- 140	100			100000							1.00	3.00	100	1.0	7.734	110.	1000		100			=
84																					1000		100													100			
-	-	_	-				10000		_				_										100						1000			1100							$\overline{}$
																																						- 1	Ē

No. of Concession,		

																														_											
111					-			-			H		E	-	-	Street Land	-	-	-	-	-	1	-	-	-	-	-		-	-	-	-	-	4	-	-,	****	100	=	三	
-	-		de la constitución de la constit	100	-	-	Thirds.	-	-	-	100	April 1	-	-	-	44	1	men.		111	-	Pe-7	-	Section 1		-	200	70.00	-		-		91 .	-	-		-	See See	mm1	min	mit.
		1000		1985	100	100	1000		100	1000	1000	200	STATE OF	100	-	Mary Street		and the		1997	-	440	400	- 100	-	100	Seed.	24	-	100	100	100	100			565	44	100	100		
anne.					399		1 1000		1000												-	1000	100	1500			74.80				10.00										_
1994																					1000	1.04	1000	15.64	177.00		100	1000	100	2000	1007		-				15.00	100			
											100				-	11.00																									
Probability			1000	10.000	1000	13,000		1,000	1.040	7.7780	1000				10.70					311.0			3300		14.80	1000	10000		1000		11000		-								
																				111					1000	1000	100	1000			-		W -					1301			
1000				1000						100							100	1960			- 1100	1000			-14.00						1027							- 12			
																																								_	

first free data and the contract and the contract that the property of

																									_								_	_			_	-		
1000	-	-	-	- +	-	-		#	-	175		100	****	1000	Second Sec	-	Proper	=	-	13	-	-	-	-	1911	-	-	-	-	-					王	-	-	144		
			200 20		mt i	-	-		9111	900	milities.	men		-	See .		-		meter.	i sa i	(max)	(mint)		and the second						-	400	1000		1			1	160	***	
		100						100				1000							100		1796	-						200	196				100	100	- 100	-	-			
75.00					10 TH		1000					**************************************					100		400,000	100	1.00	100,000	1000	4.00	1.00		100	COMP.	1000		10000		380		1999	7965				
100001	_	1000				1130				7700	120,000	1100	1986		- 111				10.00		1.779	14.00	1000				100	1100	10.00		488		330		1984	1.0				
Design Tolday																			10000	1000	100	34.86	1000	1.00	Contract.	Appendix.	1,000	1,000	Ash. Bill.		4.00		6.00		10.00					
																			1.000	0.00		100.00	10.00		1000	THE	13.00	11000	10.00		1.500				1989	3700				
1250						1000			1000	12340	12.60	1000	400		- 466	1.000	10.00		1000	100		100.00	12.00		7 11 100 1			7.00	10.00	100	7097		7.00	10000	10.00	1.00				
222																		717	73.00	0.00	110	71.00	1000	114	100	100	1141	1000	10.00		ALTERNATION N		196							#

tion. Their matter or facility property and facility of several resem-

